

D4.4 Working paper on the comparison of targets defined in local action plans, national and EU 2050 targets

19/10/2021

Prepared by: Giulia Conforto (e-think)

Reviewed by:

Edith Chassein (IREES) Marcus Hummel (e-think) Markus Fritz (Fraunhofer ISI)? Uta Burghard (Fraunhofer ISI)?

CONSORTIUM PARTNERS

LOGO	PARTICIPANT	COUNTRY	ТҮРЕ
IREES research for future.	Institute for Resource Efficiency and Energy Strategies (IREES)	Germany	Scientific
Fraunhofer	Fraunhofer Institute for Systems and Innovation Research ISI (Fraunhofer)	Germany	Scientific
TECHNISCHE UNIVERSITÄT WIEN Vienna Austria	Technische Universität Wien (TU Wien)	Austria	Scientific
Energy Research	Zentrum für Energiewirtschaft und Umwelt (e-think)	Austria	Scientific
ENERGYCITIES	Energy Cities (ENC)	France	Scientific
HESPUL	Hespul (HESP)	France	Communication
UCSA Ufficio comune per la Sostenibilità Ambientale	Ufficio Comune per la Sostenibilità Ambientale (UCSA)	Italy	Local network
	Sustainable City Network (SCN)	Greece	Local network
OESTE SUSTENTÁVEL AGÊNCIA REGIONAL DE ENERGIA E AMBIENTE DO CESTE	Agência Regional de Energia e Ambiente do Oeste – OesteSustentavel (Oeste)	Portugal	Local network
CITIES NORTHERN NETHERLANDS	City Northern Netherlands represented by City of Leeuwarden (CNNL)	Netherlands	Local network
And the set of the set	Agence Locale de la Transition Énergétique du Rhône (ALTE69)	France	Local network

THE PATH2LC PROJECT

In the PATH2LC project, public authorities are working together within the framework of a holistic network approach (so-called learning municipality networks) with the aim to achieve low-carbon municipalities.

The core of the project activities is the SE(C)APs (Sustainable Energy (and Climate) Action Plans) or similar climate protection plans developed by the municipalities. The PATH2LC project will foster an exchange of existing knowledge and experiences among municipalities, enhance coordination among different administrative bodies within the municipalities, improve cooperation with local stakeholders and civil society and will equip stakeholders in public authorities with required planning and monitoring tools to develop and implement transition roadmaps for achieving the targets set in the SE(C)APs.

The holistic network approach intends to link stakeholders in public authorities among municipalities enabling peer-topeer learning and increasing the engagement for the energy and climate transition. Policymakers and public authorities at the local level are supported with scientific analysis and expertise in order to understand and implement their SE(C)AP measures. Five existing networks of municipalities in Italy, Greece, Portugal, the Netherlands and France are participating in the project.

A special interest of the project is to invite other municipalities to replicate the learning municipality network approach and take advantage of the knowledge base collected in the project.

Further information on www.path2lc.eu

Project information

Proposal number: 892560 Acronym: PATH2LC Title: Public Authorities together with a holistic network approach on the way to low-carbon municipalities Years of implementation: September 2020 - August 2023 Client: EASME

Acknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 892560.

Legal Notice

The sole responsibility for the contents of this publication lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EASME nor the European Commission is responsible for any use that may be made of the information contained therein.

All rights reserved; no part of this publication may be translated, reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the publisher. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. The quotation of those designations in whatever way does not imply the conclusion that the use of those designations is legal without the consent of the trademark.

CONTENTS

CONSORTIUM PARTNERS	2
THE PATH2LC PROJECT	3
Project information	3
Acknowledgement	3
Legal Notice	3
CONTENTS	4
LIST OF FIGURES	5
LIST OF TABLES	5
ABBREVIATIONS	6
1. INTRODUCTION	7
2. METHODOLOGY AND INPUT DATA	7
2.1. Structure of the Analysis	8
2.1.1. Methods for targets collection	8
2.1.2. Data and Targets Heterogeneity	8
2.2. Harmonization process	9
2.2.1. Emission Targets	9
2.2.2. Renewable Energy Targets	13
2.2.3. Energy Efficiency Targets	13
2.3. Assessment process	14
2.4. Heat demand in buildings: 2050 projections with Invert/Opt model and Enerfirst scenarios	16
3. RESULTS AND FINDINGS	16
4. DISCUSSION	19
5. CONCLUSIONS	19
ACKNOWLEDGEMENTS	20
REFERENCES	20
ANNEX 1: COMPLETE ASSESSMENT: CALCULATIONS OVERVIEW	22
ANNEX 2: TOTAL NET EMISSION HISTORICAL DATA AND INDEX	24
ANNEX 3: FINAL ENERGY CONSUMPTION HISTORICAL DATA AND INDEX	25
ANNEX 4: FINAL ENERGY CONSUMPTION REFERENCE SCENARIOS	26
ANNEX 5: TARGETS PARAMETERS AND TARGET TYPES OVERVIEW	27

LIST OF FIGURES

Figure 1: Country Total Net GHG emissions (Mt CO ₂ eq)9
Figure 2: Total Net Emission Index per country (relative change compared to 1990)9
Figure 3: Final Energy Consumption per country (GWh). (Note that Greece and Portugal overlap)14
Figure 4: Final Energy Consumption Index per country (relative change compared to 1990)
Figure 5: Final Energy consumption per country, Primes Scenarios v4 2016, used for 2030 EU efficiency targets
Figure 6: Final Energy consumption per country, Primes Scenarios v1 2007, used for 2020 EU efficiency targets
Figure 7: Legend and colour coding used in Figures 12 and 13. Targets in line with national goals are highlighted in intense green, targets not in line in red, and national reference targets in yellow. Grey cells are indicated in TWh, instead of GWh
Figure 8: Example of the assessment carried out for the local administration CCMDL, after harmonization, for the emission targets
Figure 9: Example of the assessment carried out for the local administration CCMDL, after harmonization, RES and efficiency targets
Figure 10: Harmonized Target Assessment Overview17
Figure 11: Targets Assessment Overview regarding alignment with national/EU targets
Figure 12: Total Net GHG emissions per Country and EU-27 [kt CO ₂ eq], yearly change [percentage], and index (base 1990)
Figure 13: Final Energy Consumption [GWh], change since 1990 [percentage], Index base 1990 [percentage]25
Figure 14: Complete figures of Primes Scenarios REF2007 for Final Energy Consumption, used to set 2020 efficiency targets at EU level
Figure 15: Complete figures of Primes Scenarios REF2016 for Final Energy Consumption, used to set 2030 efficiency targets at EU level
Figure 16: Targets parameters and units of measure overview showing how even after harmonization, some targets remain incomparable

LIST OF TABLES

Table 1: Overview and Definition of Equations Terms. 10
Table 2: Description of the Enerfirst scenarios used with the Invert/Opt model. 16
Table 3: Results of the projection per each country. 18
Table 4: Share of building stock per year, per country projected to be renovated, according to construction period andscenario adopted, to achieve carbon neutrality by 2050.18

<u>ġ</u>ŧ

ABBREVIATIONS

CM	Calculation Module
CoM	Covenant of Mayors for Climate and Energy - Europe
EU	European Union
GFA	Gross Floor Area
GHG	Greenhouse Gas(es)
HD	Heat Demand
H2020	Horizon 2020, the EU funding programme for research and innovation from 2014 to 2020.
IPCC	International Panel on Climate Change, the intergovernmental body of the United Nations mandated to publish every 7 years the Assessment Report on human-induced climate change.
JRC	Joint Research Centre, a European Commission's science, and knowledge service which carries out research to provide independent scientific advice and support to EU policy.
LMN	Learning Municipal Networks
NECP	National Energy and Climate Plans
NEEAP	National Energy Efficiency Action Plans
NREAP	National Renewable Energy Action Plans (NREAPs)
PV	Photovoltaics
RES	Renewable Energy Source(s)
SEAP	Sustainable Energy Action Plan
SECAP	Sustainable Energy and Climate Action Plan
ST	Solar Thermal
UNEP	United Nations Environment Program
WRI	World Resource Institute

Units of measure

mtCOeq/ktCOeq	Metric tons/Kilotons of carbon dioxide equivalent, a measure of different GHG gases, based upon their
	global warming potential
MWh/GWh	Megawatt hour/Gigawatt hour, a measure of energy
MWp	Megawatt peak, a measure of nominal installed capacity output at rated laboratory conditions
	(typically used for PVs)

	(typically used for FVS)
MWth	Megawatt thermal, a measure of installed capacity output of thermal plants (typically used for ST)
TJ/PJ	Tera Joule/Peta Joule, a measure of energy

Local Administrations

LOCUI	
ALTE69	Agence Locale de la Transition Énergétique du Rhône, coordinating the French network "Rhône Network",
	which comprises:
	CCMDL Communauté de Communes (CdC) des Monts du Lyonnais (32 municipalities)
	CCSB CdC Saône-Beaujolais (42 municipalities)
	COR Communauté d'agglomération de l'Ouest Rhodanien (31 municipalities)
	SOL Syndicat de l'Ouest Lyonnais (41 municipalities)
CNNL	City Northern Netherlands, coordinating the Dutch Network, which comprises: Groningen, Assen, Emmen,
	and Leeuwarden.
Oeste	Agência Regional de Energia e Ambiente do Oeste – OesteSustentavel, coordinating the Portuguese Net-
	work, which comprises: Alcobaça, Alenquer, Arruda dos Vinhos, Bombarral, Caldas da Rainhas, Nazaré, Óbi-
	dos, Peniche, and Torres Vedras.
SCN	Sustainable City Network, coordinating the Greek network, which comprises: Oichalia, Ierapetra, Korinthos,
	Vari-Voula-Vouliagmeni, and Messinis.
UCSA	Ufficio Comune per la Sostenibilità Ambientale, coordinating the Italian network which comprises: Palma
	Campania, San Giuseppe Vesuviano, and Striano.

1. INTRODUCTION

Local climate action is marshalled by municipalities' voluntary commitment to advance their energy transition. The <u>Covenant of Mayors for Climate and Energy, Europe</u> (CoM) introduced in 2008 the Sustainable Energy Action Plan (SEAP) updated then in 2015 with the Sustainable Energy and Climate Action Plan (SECAP): instruments to support this multi-level governance approach to the energy transition, by structuring and driving local climate action. Administrations who sign the pact of the CoM agree to submit within two years an action plan. Municipalities describe in these documents their current energy landscape, their GHG emissions profile, their strategy, and the targets they publicly commit to. The CoM provides a template for compiling the plan sections, including the energy balance and the emission inventory, and requires their signatories to pledge publicly to an emission reduction target in line with the EU policy: -20% by 2020 for a SEAPs, and -40% by 2030 for SECAPs (soon to be raised to -55% net by 2030). Renewable energy and energy efficiency targets are recommended but not compulsory.

EU and national targets are set in a few different formats, (World Resource Institute (WRI) and Greenhouse Gas Protocol, 2015). Local targets are defined with similar formats but use very diverse reference base and target years, parameters, units of measure, as well as absolute or relative values. National and EU targets are mostly directly comparable or can be compared using official historical data (World Resource Institute (WRI), 2015), while local climate targets are not directly comparable to EU/national targets, therefore it is not clear whether they are aligned to EU and national policies and to what extent (Boswell et al., 2010; Salvia et al., 2021). As the Commission already noted, in this phase of the transition, *"energy efficiency is one of the key pillars for meeting our climate objectives* [...] however, this is often underestimated in existing planning" (EU Commission, 2021). Therefore, it would be interesting investigating a set of local action plans regarding their targets alignment and the application of the Energy Efficiency First (EE1st) principle (EU Commission, 2015): considering first the potential for energy efficiency in any energy-related decision and prioritizing energy efficiency investments, especially in buildings.

Some literature acknowledges heterogeneity of local climate targets and the several limits to their direct comparability (Australian Government Climate Change Authority, 2015; Bansard et al., 2017; Hoff and Strobel, 2013; Houbart, 2015; Pablo-Romero et al., 2015; UNEP, 2018, 2015). However, remarkably scarce literature can be found on attempts of normalization of misaligned climate pledges (Rowan, 2019; Senbel et al., 2013; Stevens and Senbel, 2020). The present work aims at investigating this seemingly uncovered research area by answering the question: "Are local climate and energy targets aligned to national and European targets?". To do that, the targets stated in a selection of 25 SEAPs and SECAPs SECAPs are collected and harmonized to national and EU targets. The selection of municipalities is provided by the 5 Learning Municipal Networks (LMN) in 5 European countries participating in the Horizon2020 project "Public Authorities together with a holistic network approach on the way to low-carbon municipalities" (PATH2LC). The harmonization process is done creating a country index for emissions and energy consumption, based on historical data and EU reference scenarios, estimating local past GHG emission values, and making local targets comparable by expressing them in a common base year. Finally, four scenarios of heat demand in buildings are calculated for 2050 with the Invert/Opt model (Hummel and al., 2021), showing the major role of energy efficiency in the low-carbon transition.

2. METHODOLOGY AND INPUT DATA

The study proceeds in subsequent steps: first climate and energy targets for GHG emissions, renewable energy and energy efficiency are collected at local, national and EU levels, for the years 2020, 2030 and 2050. Secondly, target heterogeneity is identified and recorded: any targets differences preventing a direct comparison, to be considered in the subsequent harmonization. Third, local targets are harmonized to common national/EU base years and national targets are expressed in local base years, to offer an indication where local targets were not set or not aligned. Fourth, harmonized local targets are assessed against national and EU targets. Finally, <u>Enefirst</u> scenarios are calculated with the Invert/Opt model (Hummel and al., 2021), evolution of the <u>Invert/EE-Lab model</u>, offering a focus on how energy demand and efficiency in buildings should evolve to achieve carbon neutrality by 2050. Projections include population, gross floor area, total heat demand, specific heat demand, and renovation rates.

2.1. Structure of the Analysis

2.1.1. Methods for targets collection

First, local climate targets are collected from the 25 selected municipalities' action plans, examining every SEAP, SECAPs and associated documents, with regards to the three key areas: emission reductions, renewable energy, and energy efficiency. The same is done for the respective national targets, collected from the National Energy and Climate Plans (NECPs), according to EU effort sharing mechanism, sometimes completed by previous commitments reported in the National Energy Efficiency Action Plans (NEEAPs) and the National Renewable Energy Action Plans (NREAPs). European targets are collected from the Commission website. For each target, the following information is gathered: target value and parameter, unit of measure, target year, reference year and reference scenario where relevant according to the type of target. A full overview of the targets collected is available in Annex 5.

2.1.2. Data and Targets Heterogeneity

A high degree of heterogeneity can be observed in the collected energy and climate targets, namely regarding the type of targets, target years, reference years, units of measure, and parameters.

Type of targets – These can be base year goals (a percentage of a past year value, mostly 1990 and 2005), target year goals (a percentage of the target year value), baseline scenario goals (a percentage of the projected future value, according to a reference scenario), and fixed-level goals (absolute values of the target year). Emission targets are mainly set as base year goals, or as the corresponding fixed level goal. Renewable energy targets are set mainly as fixed level goals by target year, either as renewable energy sources (RES) share of the energy consumption (sometimes defined as gross and/or final energy consumption) by target year, as total energy production from RES as an absolute value by target year, or as total or additional installed capacity. Efficiency targets at the EU level are indicated as trend scenario goals: reduction in primary and/or final energy consumption compared to the projected future consumption targets either compared to the same trend scenario or to a base year, but at the local level, they are expressed as absolute or percentage reduction of total or sector-specific final energy consumption compared to a base year.

Target years – The EU and national targets are set for 2020, 2030 and 2050. The great majority of municipalities (19 out of 25) set targets for 2020, many for 2030 (9), few for 2050 (5), but sometimes no targets are set for any of these years, but for years such as 2021, 2024, 2025, 2026, 2035, and 2040.

Reference years – Since the first Intergovernmental Panel on Climate Change (IPCC) Assessment Report was published, 1990 has been taken as the reference year for most emission targets. At the EU and national level, official GHG inventories and energy balances are recorded and published yearly since 1990. EU and national targets are expressed as base years goals compared to 1990 or target year goals (2030 targets also compared to 2005). However, at the local level, the first complete energy balance and emission inventory are very often compiled when the first SEAP/SECAP is written, and usually, there are no other historical data before that. Each administration sets its emission targets with a different base year, the one taken in the action plan, and with different target years. This causes that in a country on a decreasing emission trend, a local target with the same relative value (e.g. 20%) but a later reference year (e.g. 2015), corresponds to a smaller emission reduction (e.g. 18% compared to 1990) than the national target (e.g. 20% compared to 1990), because it refers to a smaller base (local emissions in 2015 were less than in 1990 if we assume them to have followed the national trend). However, because we assume such a trend at the local level, also some progress occurred between 1990 and the year when the target was set (e.g. 10% compared to 1990). Thus, a harmonized local target together with the previous progress could even sum up to an emission reduction (e.g. 10%+18%=28%) higher than national policies (e.g. 20%).

Units of measure and parameters – Emission targets are defined as percentage reduction either of GHG emissions or of CO₂ emissions, but both are measured in CO₂ equivalent tonnes, not leading to any substantial difference. A minority of municipalities express emission targets as an absolute value, for which the equivalent percentage was calculated in this study, but many indicate them both in percentage and absolute value. Some municipalities do not commit to a target but present a projection, expected if the action plan is fully implemented, or an overall regional

target. Some municipalities expressly indicate their final target, but provide no figure for intermediate targets, which must be deduced from charts and figures. The term carbon neutrality is also used with various definitions: from "-80%", "-80% or more", "-80% or -90%" to "-95%" emission reduction compared to the base year. The units of measures for renewable energy targets include GWh/MWh, PJ/TJ, MWp and MWth. Efficiency targets are defined either as a reduction of energy consumption or as an increase of energy efficiency, which is also a reduction of energy consumption, indicated with the opposite sign. The EU target mentions a reduction of "final and/or primary energy consumption". National targets mostly mention reductions of both primary and final energy consumption. However, local targets refer only to final energy consumption or simply to "energy consumption".

2.2. Harmonization process

2.2.1. Emission Targets

In this study, a national GHG emissions index is calculated and used as a proxy to backcast local GHG emissions. This methodology assumes that local GHG emissions might have followed a pattern similar to their countries' GHG emissions, being strongly connected to their national economy, however, this is an approximation. Through estimated local GHG emissions, local targets are harmonized and expressed in the common base year 1990. The variation that occurred until local targets were set is also estimated. Previous progress together with harmonized targets is then assessed to determine whether they are in line with national and EU goals or not. Finally, with a similar but opposite process, national targets are expressed in the local base year, to indicate the minimum value for local targets to be in line with national targets.

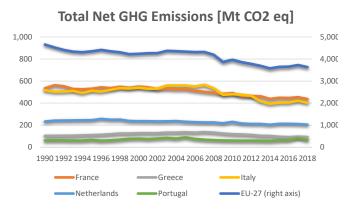


Figure 1: Country Total Net GHG emissions (Mt CO₂ eq).

Total Net GHG Emissions Index, relative change compared to 1990 [%]

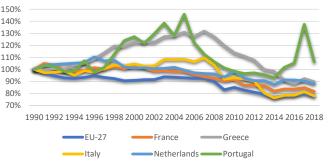


Figure 2: Total Net Emission Index per country (relative change compared to 1990).

First, official yearly values of Total Net GHG emissions from 1990 to 2018, measured in [Mt CO_2 eq], are collected for EU 27 and the 5 countries of the selected municipalities: France, Greece, Italy, Netherland, and Portugal. See Figure 1 for a graphical representation of the emission historical data. Then, the percentage change from 1990 is calculated per year and country, as shown in equation (1), and an index is created with the base year in 1990 (1990 = 100%), as shown in equation (2). All terms used in the following equations are defined in Table 1. Figure 2 shows a graphical representation of the yearly change in Total Net GHG emissions compared to 1990, expressed in percentage. Emissions do not only depend on efficiency, but mostly on GDP: looking at the trend in Portugal, two peaks can be seen, in 2005, corresponding to the demand-led boom after the introduction of the EURO, and in 20018, aligned with the recovery after the long recession sparkled by the global crises and the European sovereign debt crisis. Similarly, the sustained economic growth in Greece and subsequent crisis are reflected in its total net emissions.

$$Emissions \ Delta_{1990}^n = Emissions_n \div Emissions_{1990} - 1 \ [\%]$$
⁽¹⁾

Emissions Index
$$_{1990}^{n}$$
 = *Emissions* $_{n}$ ÷ *Emissions* $_{1990}$ [%]

(2)

Table 1: Overview and Definition of Equations Terms.

Equation Term	Definition	Example	Unit of Measure
Emissions year	Historical data of Total Net National GHG emissions	Emissions $_{\rm 1990},$ Emissions $_{\rm 1991},$ Emissions $_n$	[kt CO ₂ eq]
Emissions Delta ^{given} year base year	Percentage deviation (positive or negative) in historical GHG emissions in the given year compared to the base year	Emissions Delta ¹⁹⁹¹ , Emissions Delta ¹⁹⁹² , Emissions Delta ^{available} , Emissions Delta ⁿ ₁₉₉₀	[%]
Emissions Index ^{given} year base year	Index of national GHG emissions for every given year with base 1990 (1990=1)	Emissions Index ¹⁹⁹¹ ₁₉₉₀ , Emissions Index ¹⁹⁹² ₁₉₉₀ , Emissions Index ^{available} , Emissions Index ⁿ ₁₉₉₀	[%]
Local Emissions _{year}	Total Net GHG emissions at the local level, the available year is the only historical data, all others are estimations.	Local Emissions ₁₉₉₀ , Local Emissions ₁₉₉₁ , Local Emissions _{available} , Local Emissions _n	[kt CO ₂ eq]
Local Emissions ^{target} year Reduction _{base year}	Local estimated GHG emission reduction in absolute value at the target year.	Local Emissions ²⁰²⁰ Local Emissions ⁿ Reduction _{local base year} 'Reduction _n '	[kt CO ₂ eq]
Local Target ^{target year} (Emissions) _{base year}	Local target expressed as % difference (reduction) compared to the local reference year.	Local Target ²⁰²⁰ Local Target ²⁰²⁰ (Emissions) _{local base year} ' (Emissions) ₂₀₀₈ ''''	[%]
Local Target H ^{target} year (Emissions) _{base year}	Harmonized local target expressed as % deviation compared to the National/EU reference year (1990).	Local Target H ²⁰²⁰ Local Target H ²⁰²⁰ (Emissions) _{EU base year} ' (Emissions) ₁₉₉₀ '	[%]
National Target ^{target} year (Emissions) _{base year}	Harmonized national target expressed as % difference (reduction) compared to the local reference year (1990).	National Target ²⁰²⁰ , (Emissions) _{local base year}	[%]
Target Year _{reference}	The target year by when a target is planned to be achieved	Target Year ₁ , Target Year ₂ , Target Year _{local} ,	-
Local Change ^{given year} (Emissions) ₁₉₉₀	Local estimated GHG emission reduction in percentage at the local reference year.	Local Change ¹⁹⁹⁰ Local Change ¹⁹⁹⁰ (Emissions) _{given year} ' (Emissions) ₂₀₁₀ ''''	[%]
Total Local ^{target year} (Emissions) ₁₉₉₀	Sum of harmonized evolution from 1990 to the available year and harmonized local target.	Total Local ^{target year} Total Local ²⁰²⁰ (Emissions) ₁₉₉₀ ' (Emissions) ₁₉₉₀ '	[%]
National Target ²⁰²⁰ (Emissions) _{local base year}	National target expressed in the local reference year.	National Target ²⁰²⁰ (Emissions) local base year ['] (Emissions) ₂₀₀₉ ,	[%]

Next, missing historical data of local GHG emissions are estimated for the common base year 1990, and for the other relevant base year, 2005. As shown in equation (3), the available local emission value (*Local Emissions available*), whose year is usually the base year of local targets, is divided by the national GHG emissions index base 1990 of the same year (*Emissions Index* $_{1990}^{available}$). Then, as shown in equation (4), the local GHG emission value estimated for 1990 is multiplied by the *Emissions Index* $_{1990}^{2005}$ for the given year (2005), to estimate the local GHG emission value for 2005.

 $Local \ Emissions \ _{1990} = \ Local \ Emissions \ _{available} \ \div \ Emissions \ Index \ _{1990}^{available} \ [kt \ CO2 \ eq]$ (3)

Local Emissions $_{n}$ = Local Emissions $_{1990}$ × Emissions Index $_{1990}^{n}$ [kt CO2 eq]

With the estimate of the local GHG emissions in 1990, local targets can be harmonized and expressed in the 1990 base.

(4)

First, as shown in equation (5), the absolute value of the expected local GHG emissions reduction at the target year is calculated, then, as shown in equation (6), this value is divided by the estimated local GHG emissions of 1990 and thus expressed as a percentage of 1990 value. Local targets expressed in the 1990 and 2005 base years are used to assess if local policies and targets are aligned to national policies and targets, as explained in paragraph 2.3.

EU and national targets consider the whole evolution between 1990 and the target year, while local targets only account for the progress starting from the local reference year, thus, to see if local targets are high enough to meet national and EU targets, also the previous progress must be considered. The emissions change occurred before local targets were set, between the common base year (1990) and the local reference years, is calculated as shown in equation (7).

$$\frac{\text{Local Change}^{\text{given year}}}{(\text{Emissions})_{1990}} = \frac{\text{Local Emissions}_{\text{given year}} - \text{Local Emissions}_{1990}}{\text{Local Emissions}_{1990}} [\%]$$
(7)

Then previous change and harmonized targets are summed up as shown in equation (8), and this value is assessed against the national and EU targets.

Finally, the national target for the target year is expressed in the local baseline, with a similar, but inverse transformation, as shown in equation (8). This value serves as an indication of the minimum level to reach at the local level, to be in line with national policies, where no local target was set.

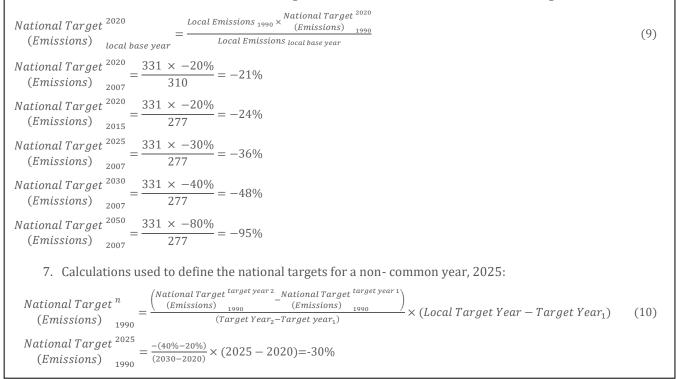
$$\frac{National Target}{(Emissions)} \frac{1}{\log al \ base \ vear} = \frac{\frac{Local \ Emissions \ _{1990} \times \frac{National \ Target}{(Emissions)} \frac{1}{_{1990}}}{Local \ Emissions \ _{local \ base \ vear}} [\%]$$
(9)

With the local targets in target years different than the national/EU targets (2020, 2030, 2050), for simplicity a linear progression has been used to estimate national targets on any other date (2021, 2024, 2025, etc.). The delta between the previous and the following national target is divided by the number of years between the two national targets and multiplied by the years between the previous national target year and the local target year, as shown in equation (9).

$$\frac{\text{National Target}^{t year}}{(\text{Emissions})} = \frac{\begin{pmatrix} \text{National Target}^{t arget year2} - \text{National Target}^{t arget year1} \\ (\text{Emissions}) & \text{Image is a starget} \end{pmatrix}}{(\text{Target Year2} - \text{Target year1})} \times (\text{Target Year}_{\text{local}} - \text{Target Year1})$$
(10)

The following box illustrates the above-explained process applied to a practical example: the Communauté de Communes (CdC) des Monts du Lyonnais CCMDL, one of the 25 local administrations assessed.

Example of the harmonization process for the local administration CCMDL forGHG emissions targets.1. Calculations used to back cast the emission value of missing years (1990, 2005, and 2007):Local Emissions
$$_{1990} = Local Emissions _{available} \div Emissions Index _{1990}^{available} [kt CO2 eq]$$
(3)Local Emissions $_{1990} = 277 \div 83\% = 331 [kt CO2 eq]$


PATH2LC LEARNING MUNICIPALITY NETWORKS

Local Emissions $n = Local Emissions_{1990} \times Emissions Index_{1990}^{n} [kt CO2 eq]$	(4)
Local Emissions $_{2007} = 331 \times 94\% = 310 [kt CO2 eq]$	
Local Emissions $_{2005} = 331 \times 98\% = 325 [kt CO2 eq]$	
2. Calculations used to forecast the absolute values of emission reductions at target years:	
Local Emissions ^{target year} Reduction _{base year} = Local Target ^{target Year} (Emissions) _{base year} × Local Emissions _{base year} [kt CO2 eq]	(5)
$\frac{Local Emissions}{Reduction} = -28\% \times 310 = -87 [kt CO2 eq]$	
$\begin{array}{l} \text{Local Emissions} \\ \text{Reduction} \end{array} = -11.2\% \times 277 = -30.99 \left[\text{kt CO2 eq} \right] \end{array}$	
$\frac{Local Emissions}{Reduction} = -18\% \times 277 = -50 [kt CO2 eq]$	
$\frac{Local \ Emissions}{Reduction} = -80\% \times 277 = -264 \ [kt \ CO2 \ eq]$	
3. Calculations used to express local targets in common base years 1990 and 2005:	
$ Local Target^{target year} = Local Emissions Reduction_{target year} \div Local Emissions_{1990} [\%] $	(6)
$\begin{array}{l} Local \ Target^{2020} \\ (Emissions)_{1990} \end{array} = -86.93 \div \ 330.53 = -26.30\% \end{array}$	
$\frac{Local Target^{2025}}{(Emissions)} = -30.99 \div 330.53 = -9.38\%$	
$\begin{array}{l} Local \ Target^{2030} \\ (Emissions)_{1990} \end{array} = -49.86 \div \ 330.53 = -15.08\% \end{array}$	
$\begin{array}{l} Local \ Target^{2020} \\ (Emissions)_{2005} \end{array} = -87 \div \ 325 = -27\% \end{array}$	
$\frac{Local Target^{2025}}{(Emissions)_{2005}} = -31 \div 325 = -10\%$	
$\frac{Local Target^{2030}}{(Emissions)_{2005}} = -50 \div 325 = -15\%$	
4. Calculations used to esmitate previous progress at local level until local reference year:	
$\frac{Local \ Change^{1990}}{(Emissions)}_{given \ year} = \frac{Local \ Emissions \ _{given \ year} - Local \ Emissions \ _{1990}}{Local \ Emissions \ _{1990}} \ [\%]$	(7)
$\frac{Local Change^{2007}}{(Emissions)} = \frac{Local Emissions_{2007} - Local Emissions_{1990}}{Local Emissions_{1990}} [\%]$	
$\frac{Local Change^{2007}}{(Emissions)_{1990}} = \frac{310 - 331}{331} = -6\%$	
$(Emissions)_{1990}$ 331 Local Change ²⁰⁰⁷ 277 - 331	
$\frac{Local Change^{2007}}{(Emissions)}_{1990} = \frac{277 - 331}{331} = -16\%$	
5. Calculations used to estimate total progress at local level:	
target year	

6. Calculations used to define minimum targets in local baseline, in line with national targets:

2.2.2. Renewable Energy Targets

To compare local targets to national and EU targets, a much simpler harmonization process is needed. Where local renewables targets are defined as a percentage of final consumption by a given target year, these are directly comparable to national and EU targets, as they also are expressed in these same terms.

Conversely, where local targets are defined as production from renewable energy sources (RES absolute value) by a given target year, this value is divided by the projected total final energy consumption forecasted for that target year and expressed as a percentage, as shown in equation (9). Where the expected total final energy consumption by target year is not provided, the efficiency target is used for estimating the total final energy consumption by the target year.

```
Local Target^{target year}_{(Renewables)_{base year}} = Local RES Production_{target year} \div Local Energy Consumption_{target year} [\%] (9)
```

Where local renewable energy targets are defined as total or additional installed capacity, without a projection of the expected production, this study considers them not comparable to national and EU targets.

2.2.3. Energy Efficiency Targets

This study assumes final energy consumption as the relevant parameter for local efficiency targets, also comparing them to national and EU targets, as no data on primary energy consumption is typically available at the local level. At the EU and national levels, efficiency targets are indicated as trend scenario goals, with reference to the Primes Reference Scenarios: REF2007 for 2020 targets and REF2016 for 2030 targets (EU Commission, 2019; EU Commission and DG Energy and Transport, 2016, 2007). Whether local efficiency targets are indicated as trend scenario goals, or as base year goals, in either case, to avoid depending on scenarios that are not used at the local level, national targets are expressed as percentage change compared to 1990, then a process similar to the one shown for emission targets is followed, using historical national final energy consumption for the index. Figure 3 and Figure 4 show the final energy consumption values and index. Figure 5 and Figure 6, show the Primes Reference Scenarios 2007, 2016 and their indexes.

D4.4 Working paper on the comparison of targets defined in local action plans and EU 2050 targets | 19/10/2021

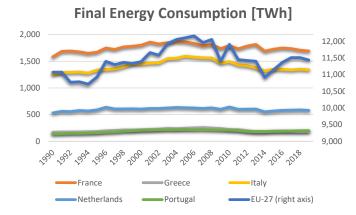


Figure 3: Final Energy Consumption per country (GWh). (Note that Greece and Portugal overlap)

Final Energy Consumption [ktoe] REF2016

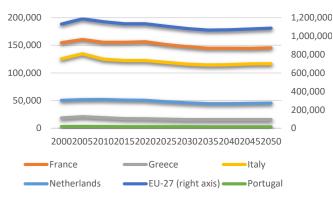


Figure 5: Final Energy consumption per country, Primes Scenarios v4 2016, used for 2030 EU efficiency targets.

2.3. Assessment process

Final Energy Consumption Index, relative change compared to 1990 [%]

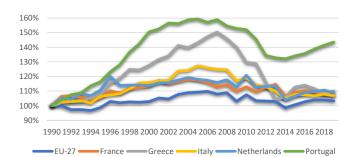


Figure 4: Final Energy Consumption Index per country (relative change compared to 1990).

Final Energy Consumption [ktoe] (REF2007)

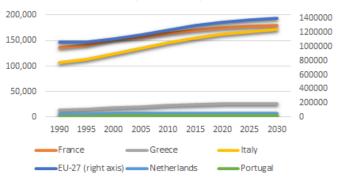


Figure 6: Final Energy consumption per country, Primes Scenarios v1 2007, used for 2020 EU efficiency targets.

Parameters (Emissions, Renewables, Efficiency) – The first level of assessment regards whether municipalities set in their SEAPs/SECAPs any targets for the three key areas: GHG emissions reduction, renewables and energy efficiency.

Time Horizon – The second level of assessment regards whether municipalities set in their SEAPs/SECAPs any targets for 2020, 2030 and 2050, or which other time horizon they adopted.

Target Ambition – The third level of assessment regards whether harmonized local target values are at least as high as national targets. The complete assessment is available in Annex 5. Figure 8 and Figure 9 show an example of the assessment carried out for the local administration of CCMDL. Regarding GHG emissions, no 2020 target is set, the SECAP mentions a regional target, that the municipality has not committed to, which is higher than national and EU targets. Emission targets for 2025 and 2030 fall short compared to national targets, no target was set for 2050. Regarding renewables, no target was set for 2020, the 2025 target (15,3%) scores below national and EU targets, but targets for 2030 (42%) and 2050 (97%) are higher than the national 2030 target (32%), no 2050 renewable energy targets are set at EU and national levels.

LEGEND
EU reference data
Verified national/local data
Estimated local emissions (backcasting)
Values in TWh, despite the column indicates GWh

Estimated prgress between 1990 and local ref. year Harmonized national targets Esimated missing local targets Harmonized local targets in line or above national target Harmonized local targets below national target

Figure 7: Legend and colour coding used in Figures 12 and 13. Targets in line with national goals are highlighted in intense green, targets	
not in line in red, and national reference targets in yellow. Grey cells are indicated in TWh, instead of GWh	

				-		-	-	GHG En	nissions		-		-		-	
Network		Target Year	Target Value	Parameter	Ref.	Absolute Value	Absolute Value	2005 Absolute Value [ktCOeq]		Reduction Absolute value	Target Total Final Emissions [ktCOeq]	Change from 1990 to Local Ref Year	Target (Ref. 1990) [%]	Target (Ref. 2005) [%]	Target (Local	Total Reduction from 1990 [%]
		2020	-20% (21% ETS + 10% non ETS)	GHG emissions	1990	4,656,859	4,656,859	4,334,527	-20%	-931,372	3,725,487		-20%	-21.5%		
EU	-27	2030	-55% at least -> -43% ETS + -30% non ETS	GHG emissions	1990				-55%	-2,561,272	2,095,587		-55%	-59.1%		
		2050	carbon neutral	GHG emissions (net-zero)					-80% or more	-3,725,487	931,372		-80% or more	-85.9%		
		2020	-20%	GHG emissions	1990	535,026	535,026	526,037		-107,005	428,021		-20%	-14%		
Fra	nce	2030	-40%	GHG emissions	1990					-214,010	321,016		-40%	-37%		
		2050	carbon neutral	without the use of carbon offsetting						-428,021	107,005		carbon neutral (- 80%?)			
e,		2020	NOT SET (-28% objectif SRCAE)	GHG emissions	2007	310			NOT SET (-28% SRCAE)	-87	224	-6%	-26%	-27%	-24%	-32%
- Franc	CCMDL	2025	-11.19% (to 246 ktCO2eq)	GHG emissions	2015	277	331	325	-11.2%	-31	246	-16%	-9%	-10%	-36%	-26%
ALTE69 - France		2030	-18%* (seems from the chart, no figures)	GHG emissions (somethig like 226 ktCO2eq from the chart p.152 SECAP)					-18%	-50	227		-15%	-15%	-48%	-31%
		2050							NOT SET	-264	66		-80%	N.A.	-95%	-80%

Figure 8: Example of the assessment carried out for the local administration CCMDL, after harmonization, for the emission targets.

			Re	enewable Energy							Energy Ef	ficiency						
Network	Region		Target Value	Parameter	value		Target Value	Parameter			1990 Absolute Value [GWh, TWh in grey]		Target Reduction Absolute value [GWh]	Target Total Final Consumption [GWh]	Change from 1990 to Local Ref Year	Target (Ref. 1990) [%]	National Target (Local Ref.) [%]	Total Reduction from 1990 [%]
		2020	20%	RES in final energy consumption		2020	+20%	EE (reduction in primary and final energy consumption compared to trend scenario)	2007 PRIMES projection for 2020	849		20%	-			20.00%		
EL	J-27	2030	32%	RES in final energy consumption (14% in transport and 1,3% in H&C)		2030	+32,5%	EE (reduction in primary and final energy consumption compared to trend scenario)	2016 PRIMES projection for 2030	846		32.5%	-			32.50%		
		2050	80%	electricity from RES														
		2020	23%	RES in gross final energy consumption			131.4 Mtoe (1,528 TWh)	Final energy consumption	2012	1,786	1,585		- 57	1,528		-4%		
Fra	ance	2030	33%	RES in final energy consumption (14% RES in transport, +1%/year in DHC up to 60% and +1,3% in H&C)			120.9 Mtoe (1,406 TWh) = - 20% vs 2012	Final energy consumption	2012			-20%	- 179	1,406		-11%		
		2050	more than >80%	of electricity from RES		2050	-50% vs 2012	Final energy consumption	2012			-50%	- 692	893		-44%		
		2025	15%	RES in final energy consumption	114	2025	-12% vs 2015 (746GWh)	Final energy consumption	2015	849	779	-12%	- 102	746	9%	-13.07%	-4%	-4%
France																		
ALTE69 - France	CCMDL	2030	40%	RES in final energy consumption	248	2030	-27% vs 2015 (620GWh)	Final energy consumption	2015			-27%	- 229	620		-29.41%	-10%	-20%
		2050	97%	RES in final energy consumption	419	2050	-49% vs 2015 (433GWh) and Energy Positive	Final energy consumption	2015			-49%	- 416	433		-53.37%	-40%	-44%

Figure 9: Example of the assessment carried out for the local administration CCMDL, after harmonization, RES and efficiency targets.

2.4. Heat demand in buildings: 2050 projections with Invert/Opt model and Enerfirst scenarios

A more in-depth analysis is carried out with regards to the heat demand in buildings using the Enerfirst scenarios which were developed in the framework of the Horizon 2020 project "Making Energy Efficiency First principle operational". These scenarios are aimed at identifying which set of interventions is more cost-efficient to achieve carbon neutrality by 2050. The analysis in this study is done using the Invert/Opt model (Hummel and al., 2021) which is an evolution of the Invert-EE Lab model, built to optimize several variables with a given number of constraints. Four scenarios are used, all respecting the constraint of achieving carbon neutrality by 2050 (-95% GHG emissions compared to 1990): a scenario with high use of renewable energy, one with a high level of building renovation, one with a low level of building renovation, and one with low restrictions, as detailed in Table 2. The main differences are set in the indication of how many refurbishment actions should be of maintenance, with the remaining ones being of thermal renovation. The increased renovation scenario also has a shorter refurbishment life cycle time The low restriction one is particularly aimed at choosing freely how to achieve carbon neutrality with the most cost-effective combination of thermal renovation and energy resources.

A projection to 2050 with 2017 data is calculated applying four Enerfirst scenarios to the Invert/Opt model for each of the 25 municipalities and the 5 networks of municipalities, providing an estimation of the local population, Gross Floor Area (GFA, declined as total, residential, and non-residential), Heat Demand (HD, intended as total energy demand for space heating and hot water, declined as well as total, residential, and non-residential) for each Enerfirst scenario used. The projection also estimates the share of the building stock that shall undergo thermal renovation per year per country. Starting from each national building stock, the model calculates the share of buildings to be demolished by 2050, using a demolition function with a Weibull probability distribution based on the buildings age distribution. Based on this, the model also estimates the share of new constructions needed. These two values, the share of demolished buildings and new constructions, vary by country but are constant across all scenarios in the same country. A chart obtained from this model shows the estimated projection of different interventions on the building stock (no intervention, maintenance, thermal renovation, and new constructions) by 2050. Although these results are calculated at the national, and not at the local level, they still provide an important indication for each considered network and their respective municipalities.

Scenario	Description	Share of maintenance actions	Life Cycle Refurbishment Length
Dir_resh_95	Default scenario (applying the EU renewable energy directive): high level of RES (heat pumps, photovoltaic, solar thermal, biomass), minor role of DHC, some hydrogen, high electrification.	20%-50%	1
Increased renovation	Scenario with an increased level of renovation of the building stock, imposed by a forced higher level of building retrofitting, therefore higher efficiency.	10%-90%	0.7
Low efficiency	Scenario with a low level of building renovation compared to the baseline.	65%-90%	1
Low restrictions	Scenario with as little restriction as possible, where the model identifies the highest cost-efficient equilibrium.	10%-90%	1

Table 2: Description of the Enerfirst scenarios used with the Invert/Opt model.

3. RESULTS AND FINDINGS

Parameters (Emissions, Renewables, Efficiency) – Not all municipalities have set targets for all the three key areas. Emission reduction is the area where at least a target was set in most cases (24 municipalities out of 25), followed by energy efficiency (9 out of 25) and renewables (7 out of 25).

Time Horizon – Not all municipalities set targets for all the three main target years. Most municipalities set only a target for 2020, a few also a target for 2030, almost none for 2050, and some adopted other timelines (2021, 2024, 2025, 2026, 2035, 2040...). On average, for the three main target years, over the three key areas, only 25% of considered municipalities have set at least one target.

Target Ambition – After the harmonization, very few targets result aligned to EU and national policies. The highest number of local targets set and aligned can be seen for GHG emissions reduction by 2020 (36%) and intermediate years between 2021 and 2029 (16%), 2030 (12%) and 2050 (12%), as well as for renewables by 2050 (12%). All other parameters and time horizons scored even lower, with the lowest results for energy efficiency targets (average 5.6%). A condition set by the CoM to accept and publish a SEAP/SECAP, is that it includes an emission target at least of the same value as the EU/national targets. This might explain why many municipalities do not set targets for renewables and efficiency, unless they are forced to, as in the French case. Also, the old SEAP template did not require setting any target beyond 2020, similarly to SECAP beyond 2030, therefore municipalities are not pushed to set long-term targets, and having assessed action plans that date a few years may also explain why 2030 and 2050 targets are more neglected than 2020 targets.

Figure 11 and Figure 10 show a summary of the target assessment results just described. The complete assessment can be seen in Annex 5 and <u>here</u>. As previously mentioned, where no target is set at the local level, this study has provided each municipality with an indication of the climate and energy targets in line with national goals.

			Emission I	Reductio	n Targets			Renewabl	e Energy	Targets			Energy Eff	ficiency T	argets	
		2020	2021-2029	2030	2021-2049	2050	2020	2021-2029	2030	2021-2049	2050	2020	2021-2029	2030	2021-2049	2050
lce	CCMDL	- (A)	# (2025)	×	-	-	-	# (2025)	1	-	1	-	√ (2025)	1	-	1
) - France	CCSB	-	✔ (2021, 2026)	1	-	1	-	≭, √ (2021, 2026)	1	-	1	-	₩,√ (2021, 2026)	1	-	1
ALTE69	COR	-	# (2024)	¥	-	×	-	# (2024)	×	-	1	-	* (2024)	1	-	 ✓
ALT	SOL	-	* (2021, 2026)	×	-	*	-	# (2021, 2026)	×	-	*	-	# (2021, 2026)	*	-	×
	Oichalia	4	-	- (A)	-	-	- (A)	-	-	-	-	- (A)	-	-	-	-
ece	lerapetra	1	-	-	-	-	- (N)	-	-	-	-	- (N)	-	-	-	-
gree	Korinthos	1	-	-	-	-	- (N)	-	-	-	-	- (N)	-	-	-	-
SCN - Greece	Vari-Voula- Vouliagmeni	*	-	-	-	-	- (N)	-	-	-	-	- (A)	-	-	-	-
	Messinis	1	-	-	-	-	- (N)	-	-	-	-	- (A)	-	-	-	-
taly	Palma Campania	1	-	1	-	-	- (N)	-	- (A)	-	-	- (A)	-	- (A)	-	-
UCSA - Italy	San Giuseppe Vesuviano	1	-	~	-	-	- (N)	-	- (A)	-	-	- (A)	-	- (A)	-	-
2	Striano	1	-	1	-	-	- (N)	-	- (A)	-	-	- (A)	-	- (A)	-	-
le ids	Groningen	-	-	-	✓ (2035)	1	-	-	-	- (2035, NQ)	-	-	-	-	✓ (2035)	-
CNNL - The Netherlands	Assen	-	-	- (NQ)	- (2040, NQ)	1	- (A)	- (2023, N)	-	-	-	- (A)	- (2023, A)	-	-	-
VINL Sthe	Emmen	×	-	-	* (2035)	1	æ	-	-	-	-	-	-	-	-	-
υş	Leeuwarden	-	-	-	-	-	1	-	-	-	-	1	-	-	-	-
	Alcobaça	×	-	-	-	-	-	-	-	-	-	-	-	-	-	-
a	Alenquer	×	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Portug	Arruda dos Vinhos	*	-	-	-	-	-	-	-	-	-	-	-	-	-	-
- le	Bombarral	×	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oeste Sustentável - Portugal	Caldas da Rainhas	×	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Suc	Nazaré	×	-	-	-	-	-	-	-	-	-	x	-	-	-	-
este	Óbidos	4	-	-	-	-	-	-	-	-	-	x	-	-	-	-
0	Peniche	×	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Torres Vedras	æ	-	-	-	-	æ	-	-	-	-	s	-	-	-	-
			nal Target years: 2 in line with Nation					get years (per linea in line with Nationa					ns, no target set not quantifiable			
		×	not in line with Na	ational (El	J) targets		×	not in line with nat	ional (EU)	targets		(A)	projection aligned			
		-	not set				-	not set				(N)	projection not aligr	ned		

Figure 10: Harmonized Target Assessment Overview

Invert/Opt model and Enerfirst scenarios – Different municipalities show different results, but some common trends can be seen across all 5 networks. To achieve carbon neutrality by 2050, a significant decrease in total heat demand is projected, as shown in Table 3. The default scenario forecasts total heat demand to be almost halved basically in all municipalities and networks, with the smallest reduction in the French network and the biggest in the Greek one.

What is most interesting, is that the low restriction scenario suggests a substantial use of efficiency and renovation, somewhere between the default and the increased renovation scenario. All scenarios for all networks (except the

low-efficiency one) forecast the specific energy demand to decrease by at least 40%, with peaks of at least 50% in the Dutch network and at least 60% in the Greek network. The national yearly share of the building stock projected to undergo thermal renovation is reported in

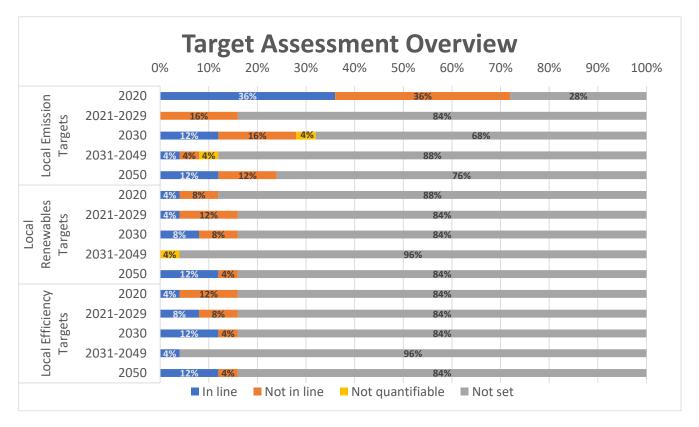


Figure 11: Targets Assessment Overview regarding alignment with national/EU targets.

Table 4 Consistently with the previous results, the model with a low-restrictions scenario estimates a significant level of renovation, about halfway between the default scenario and the increased renovation scenario. Although these values are not calculated at the local level, they are still a relevant indication for each network considered.

	C	Gross Floor Area	(GFA)	GFA per		l	He	eat Demand	
Network	Total	Residential	Non- Residential	capita	Population	Default	Inc. Renov.	Low efficiency	Low restrictions
France – Alte69	+18%	+22%	-3%	-3%	+22%	-34%	-40%	-16%	-37%
Greece – SNC	-15%	-16%	-7%	-7%	-9%	-67%	-70%	-60%	-69%
Italy - UCSA	-8%	+17%	+2%	+2%	-10%	-45%	-51%	-34%	-49%
CNNL – Netherlands	+9%	+43%	+11%	+11%	-2%	-46%	-55%	-27%	-50%
Oeste - Portugal	-5%	-2%	+2%	+2%	-7%	-43%	-47%	-31%	-45%

Table 4: Share of building stock per year, per country projected to be renovated, according to construction period and scenario adopted, to achieve carbon neutrality by 2050.

Network	Cons	truction	period bef	ore 1975	Constru	ction pe	riod betwe 1990	en 1976 and	Consti		period betv nd 2014	ween 1991
Network	Default	Inc. Renov.	Low efficiency	Low restrictions	Default	Inc. Renov.	Low efficiency	Low restrictions	Default	Inc. Renov.	Low efficiency	Low restrictions
France	1.5%	2.3%	0.8%	1.7%	1.9%	2.5%	0.4%	2.3%	1.1%	1.5%	0.1%	1.3%
Greece	1.2%	2%	0.6%	1.5%	1.8%	2.4%	0.7%	2.2%	1.5%	2%	0.3%	1.7%
Italy	1.3%	1.9%	0.6%	1.5%	1.8%	2.4%	0.5%	2.2%	1.4%	1.7%	0.2%	1.7%
Netherlands	1.5%	2.3%	0.4%	1.8%	1.7%	2.4%	0.5%	2.2%	1.2%	1.6%	0.6%	1.4%
Portugal	1.2%	2.1%	0.6%	1.4%	1.6%	2.1%	0.5%	1.8%	1.3%	2.0%	0.3%	1.7%

4. DISCUSSION

Local GHG emissions might not have followed a pattern similar to the national trend, so a level of error must be accounted for when considering the backcasting estimation of local GHG emissions in 1990 and 2005.

Emissions reduction has proved to follow a linear progression hardly ever. Its curve is affected by several factors including progressively decreasing prices of renewable and efficient technologies, incremental learning curve, incremental available funds (EU/national), incremental socio-political pressure urging for climate action, but also the widespread trend of aiming at the low hanging fruits in early stages, with possible step-like acceleration and deceleration phases. Nonetheless, a linear progression was adopted to interpolate the emission reduction targets at the national and local levels where targets have different target years. A level of error must be accounted for this approximation; however, this paper aims at raising awareness on the fact that local climate targets often seem to be deceivingly aligned to national and EU targets, but a simple harmonization process can remove this gap. IT would be desirable that local administrations and municipalities are aware of such issues and run a harmonization process when setting their climate targets in future.

Some local targets remain not comparable, simply because the same data are not available at the local and national levels. For example, energy efficiency at the EU and national level is indicated as reduction of primary and final energy consumption, but the primary energy consumption is not available at the local level, thus this target cannot be found in local policies. Others are not comparable because they are not expressed with the same parameters. For example, renewable energy targets at the national level are indicated as a percentage of final energy consumption or national energy production as opposed to targets at the local level indicated as installed capacity, without providing a projection of expected production that could help to estimate the expected generated energy.

Even some national targets show a degree of variability despite using the same wording, as the concept of carbon neutrality has multiple definitions: -80%, -80% or more, -80%/-90%, -95%.

5. CONCLUSIONS

This analysis shows that the great majority of local climate and energy targets in the municipalities assessed, are either not set or not aligned to national and EU policies. Even when targets in local baseline seem aligned to national and EU goals, once harmonized they prove to be not. Given these results, local climate action seems to be less ambitious than national and EU commitments, nonetheless, this is still a great achievement. The fact that so many municipalities committed voluntarily to some climate and energy targets show a broad, genuine, strong desire to advance local climate action in Europe. The CoM alone counts to date 10,711 signatories and 6,833 published action plans, without including all municipalities who adopted an action plan out of national requirements, without joining the CoM, as the majority of French local administrations, for instance. At the same time, while any step

forward on the road to climate change mitigation is a precious effort, this assessment reveals a limit of local climate action, where better coordination and clearer guidance could be attained. This study has not investigated whether such target misalignment was known by the local administrations, or they were unaware of the harmonization bias.

National/EU targets expressed in the local baseline for each key area (emissions, renewable and efficiency) by 2020, 2030, and 2050 could guide future policy developments, especially until a roadmap for implementation or the action plan is updated.

The scenarios calculated with the Invert/Opt model with current price information proved to consider building renovation a cost-effective option to achieve carbon neutrality. This confirms how energy efficiency plays a pivotal role in climate action and how building renovation is both a necessary and a cost-effective solution to achieve the EU 2050 net carbon zero target. Considering that many SEAPs and SECAPs do not set efficiency targets, nor a building stock renovation plan, it seems essential to identify what barriers prevent an adequate local climate action with regards to heating and cooling and building efficiency, and support municipalities in overcoming such barriers to start tackling these core sectors. This is where the PATH2LC project steps in.

ACKNOWLEDGEMENTS

This work has been performed in the course of the Horizon 2020 project Path2LC (project number 892560) funded by the European Commission, to which I convey my deepest appreciation for providing the funding to carry out the present investigation. This work has greatly benefited from the discussions within the project consortium and mainly with the colleagues Marcus Hummel, Andreas Müller and Bernhard Mayer of e-think, Edith Chassein of IREES, Uta Burghard and Markus Fritz of Fraunhofer ISI, as well as with the local partners, Fréderic Bazzoli of ALTE69, Panayiotis Michael of SCN, Luigi Acquaviva and Michela Aufiero of UCSA, Michiel Deboer and Joep Poot of CNNL, and Filipa Carlos and Manuela Gervasi of Oeste Sustentável.

REFERENCES

Australian Government Climate Change Authority, 2015. Comparing Countries' Emissions Targets - A Practical Guide.

- Bansard, J.S., Pattberg, P.H., Widerberg, O., 2017. Cities to the rescue? Assessing the performance of transnational municipal networks in global climate governance. Int. Environ. Agreem. Polit. Law Econ. 17, 229–246. https://doi.org/10.1007/s10784-016-9318-9
- Boswell, M.R., Greve, A.I., Seale, T.L., 2010. An Assessment of the Link Between Greenhouse Gas Emissions Inventories and Climate Action Plans. J. Am. Plann. Assoc. 76, 451–462. https://doi.org/10.1080/01944363.2010.503313
- EU Commission, 2021. Energy efficiency first [WWW Document]. Energy Eur. Comm. URL https://ec.europa.eu/energy/topics/energy-efficiency/targets-directive-and-rules/energy-efficiency-first_en (accessed 9.20.21).
- EU Commission, 2019. EU Reference Scenario 2020 [WWW Document]. Energy Eur. Comm. URL https://ec.europa.eu/energy/data-analysis/energy-modelling/eu-reference-scenario-2020_en (accessed 8.23.21).
- EU Commission, 2015. Energy Union Package. COM(2015) 80 final "A Framework Strategy for a Resilient Energy Union with a Forward-Looking Climate Change Policy."
- EU Commission, DG Energy and Transport, 2016. EU Reference Scenario 2016 Energy, transport and GHG emissions Trends to 2050.
- EU Commission, DG Energy and Transport, 2007. European energy and transport: trends to 2030. Office for Official

Publications of the European Communities, Luxembourg.

- Hoff, J., Strobel, B.W., 2013. A Municipal 'Climate Revolution'? The Shaping of Municipal Climate Change Policies.
- Houbart, C., 2015. Greenhouse Gas Emission Reduction Targets among Member Cities.
- Hummel, M., al., 2021. How cost-efficient is energy efficiency in buildings? A comparison of building shell efficiency and heating system change in the European Building stock.
- Pablo-Romero, M. del P., Pozo-Barajas, R., Sánchez-Braza, A., 2015. Understanding local CO2 emissions reduction targets. Renew. Sustain. Energy Rev. 48, 347–355. https://doi.org/10.1016/j.rser.2015.04.014
- Rowan, S.S., 2019. Pitfalls in comparing Paris pledges. Clim. Change 155, 455–467. https://doi.org/10.1007/s10584-019-02494-7
- Salvia, M., Reckien, D., Pietrapertosa, F., Eckersley, P., Spyridaki, N.-A., Krook-Riekkola, A., Olazabal, M., De Gregorio Hurtado, S., Simoes, S.G., Geneletti, D., Viguié, V., Fokaides, P.A., Ioannou, B.I., Flamos, A., Csete, M.S., Buzasi, A., Orru, H., de Boer, C., Foley, A., Rižnar, K., Matosović, M., Balzan, M.V., Smigaj, M., Baštáková, V., Streberova, E., Šel, N.B., Coste, L., Tardieu, L., Altenburg, C., Lorencová, E.K., Orru, K., Wejs, A., Feliu, E., Church, J.M., Grafakos, S., Vasilie, S., Paspaldzhiev, I., Heidrich, O., 2021. Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU. Renew. Sustain. Energy Rev. 135, 110253. https://doi.org/10.1016/j.rser.2020.110253
- Senbel, M., Fergusson, D., Stevens, M., 2013. Local responses to regional mandates: assessing municipal greenhouse gas emissions reduction targets in British Columbia. Sustain. Sci. Pract. Policy 9, 28–41. https://doi.org/10.1080/15487733.2013.11908105
- Stevens, M., Senbel, M., 2020. What Happens When Municipalities Set Targets to Reduce Their Greenhouse Gas Emissions? J. Plan. Educ. Res. 40, 44–55. https://doi.org/10.1177/0739456X17741716
- UNEP, 2018. Bridging the emissions gap The role of non-state and subnational actors (Pre-release version of a chapter of the forthcoming UN Environment Emissions Gap Report 2018).
- UNEP, 2015. Climate Commitments of Subnational Actors and Business.
- World Resource Institute (WRI), 2015. Canada, EU, Japan and US Post-2020 GHG Emissions Targets: Estimated Emissions Reductions Relative to Different Base Years [WWW Document]. World Resour. Inst. URL https://www.wri.org/data/canada-eu-japan-and-us-post-2020-ghg-emissions-targets-estimated-emissionsreductions-relative (accessed 8.18.21).
- World Resource Institute (WRI), Greenhouse Gas Protocol, 2015. GHG Protocol Mitigation Goal Standard, Overview

 Presentation
 [WWW
 Document].
 URL

 https://ghgprotocol.org/sites/default/files/standards_supporting/Overview_Presentation_Mitigation_Goal_Stan
 dard_1.pdf

PATH2LC LEARNING MUNICIPALITY NETWORKS

ANNEX 1: COMPLETE ASSESSMENT: CALCULATIONS OVERVIEW

No		GHG Emissions	ns							Renewable	Energy						Energy Efficien	су							
Image: stateImage: state </th <th>ion Final</th> <th>1990 2005 Target Tar Absolute Absolute (Local Rei Value Value Refrence Ab</th> <th>Target T Reduction F Absolute value E</th> <th>Target Total Cha Final fro Emissions to</th> <th>Change from 1990 to Local Ref Year</th> <th>190 Target (Ref. 1990) (Ref. 1990) [%] [%]</th> <th>rget Na ef. Tai 05) (Lo</th> <th>lational arget Local of) [96]</th> <th>Total Reduction 1 from 1990</th> <th>arget</th> <th></th> <th>Absolute value [GWh]</th> <th>Target year</th> <th>Target Value</th> <th>Parameter</th> <th>Reference Year</th> <th>Ref. Year Absolute</th> <th>1990</th> <th>-</th> <th>Target Reduction Absolute value</th> <th>Final</th> <th>from 1990</th> <th>Target (Ref. 1990) [%]</th> <th>Toront De</th> <th>Total Reduction rom 1990</th>	ion Final	1990 2005 Target Tar Absolute Absolute (Local Rei Value Value Refrence Ab	Target T Reduction F Absolute value E	Target Total Cha Final fro Emissions to	Change from 1990 to Local Ref Year	190 Target (Ref. 1990) (Ref. 1990) [%] [%]	rget Na ef. Tai 05) (Lo	lational arget Local of) [96]	Total Reduction 1 from 1990	arget		Absolute value [GWh]	Target year	Target Value	Parameter	Reference Year	Ref. Year Absolute	1990	-	Target Reduction Absolute value	Final	from 1990	Target (Ref. 1990) [%]	Toront De	Total Reduction rom 1990
								i., [/o]	[/4]	2020 20%			2020	+20%	final energy consumption	2007 PRIMES projection fo 2020	_	9	20%	[GWh]	[GWI]	Nel Teal	20.00%	Nel., [70]	[/0]
	2,561,272 2	-55%	-55% -2,561,272	272 2,095,587	7	-55% -5	-59.1%			2030 32%	consumption (14% in		2030	+32,5%	EE (reduction in primary and final energy consumption	2016 PRIMES projection fo 2030	r 84	6	32.5%				32.50%		
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<	\$,725,487	-80% or more	or -3,725,487	487 931,372	2	-80% or -8	85.9%			2050 80%	electricity from RES				compared to trend scenario)										
Image: star in the star in th	-107,005	6 535,026 526,037	-107,005	005 428,021	1	-20%	-14%				energy consumption		2020		Final energy consumption	2012	1,78	6 1,585	5	- 257	1,528	- 57	-3.57%		
III	-214,010		-214,010	010 321,016	5		-37%			2030 33%			2030	2012 (1,406 T WH) = -20% VS	Final energy consumption	2012		_	-20%	- 380	1,406	- 179	-11.28%		
	-428,021	NOT SET	-428,021	021 107,005	5	neutral (-				2050 more than >80%	of electricity from RES		2050	-50% vs 2012	Final energy consumption	2012			-50%	- 893	893	- 692	-43.66%		
	-87	SRCAE))	-87 224	-6%			-24%			RES in final energy						<u> </u>			- 28		8.929		-3.28%	5.35%
	-31	331 325 -11.2%	-31	-31 246	5 -16%	16% -9%	-10%	-36%	-26%	2025 15%	consumption	114	2025	-12% vs 2015 (747GWh)	Final energy consumption	2015	849	9 779	-12%	- 102	747		-13.07%	-6.82%	-4.15%
	-50	-18%	-18% -50	-50 227	7	-15%	-15%	-48%	-31%	2030 40%	consumption	248	2030		Final energy consumption	2015			-27%	- 229	620		-29.41%	-10.35%	-20.49
	-264			264 13	3			-95%	-96%		consumption	419	-	Energy Positive		2015	1.02	1 1 220				14.65	-53.37% -16.76%	-40.09%	-44.45%
N N N N N N N N N N N N N N N N N N N <	-51 -94	-28%	-28% -94	-94 242	-14%	-24%	-25%	-25%	-27%	2026 33%	RES production		2026	-23.7% vs 2013 (1084 GWh)	Final energy consumption	2013	1,42	1 1,239	-24%	- 337	1,084		-16.76%		-12.52%
	150	-83%	-83% -279	279 57	7	-72%	-73%	-46% -93%	-49%	2050 127%		441 <u>805</u>	2050	635 GWh final energy consumption -55%						- 786	635		-63.40%		-48.75%
	-71 -27	96 354 348 -9%	-9% -27	-27 270	-16%	16% -8%	-8%	-24% -33%	-20% -24%	2024 17%	RES		2024	1134GWh (-9.9%)		2015	1,25	8 1,155	-10%	- 124	1,134		-10.74%	-3.28%	5.35% -1.82%
N N<		-50%	-50% -148	148 148	3	-42%	-43%	-48% -95%		2050 101%	RES (energy positive)	610	2050	605GWh (-51.9%)	Energy consumption				-51.9%		605		-21.47%	-40.09%	-12.55%
Image: Solution in the state of t	-6 -79							-26% -38%	-17% -28%	2026 13%	RES					2015	2,77	3 2,546		- 9 - 212		8.929	-0.35% -8.33%	-3.79% -7.15%	8.569 0.599
<								-48% -95%	-32% -61%		RES									_			-10.88% -45.92%		-1.96%
<	-20,739	103,697 135,786 -20%	-20% -20,739	739 82,958	3	-20%	-4%				RES		2020	18.4 Mtoe (213,992GWh)				171	-28%		214	43	25.18%		
Image: First state Image:	-43,553	-42%	- 42% -43,553	553 -43,553	3	-42%	-56%			2030 consumption, 43% in H&C, 19% in	final energy		2030	16.5 Mtoe (191,895GWh)	Final energy consumption	-38% vs 2007 PRIMES			-38%		192	21	12.26%		
	-82,958			958 -82,958	3					41% (72% in gross electricity 2040 consumption, 43% in H&C, 41% in transport)	final energy														
Image: marge	-19	8 52 68 -32.40%	-19	-19 39	9 11%	11% -36%	-27%	-18%	-25%	2020 37%		49.251	2020	Expected -6836MWh =-4.86%	Final energy consumption	2011	14:	1 109	-4.86%	- 7	134	28.759	-6.26%	19.56%	22.49%
Image: Propering on the section of the sectin of the section of the secti	-23		ET (23	-23 35	5	-44%	-34%	-38%	-33%	2030 NOT SET			2030	NOT SET					NOT SET	13	123		12.26%	9.52%	12.26%
Image: marrie	-41			-41 16	5			-72% -18%				20.584	2020	Expected -34829MWh = -11%	Final energy consumption	2010	310	6 243	-2.17%	- 7	309	29.655	6 -2.81%	19.43%	26.84%
	-67	NOT SET	ET -67	-67 92	2			-37%	-42%	2030 NOT SET	target		2030	NOT SET					NOT SET	30	273		12.26%	9.45%	12.26%
N N	-128				119/			-70%				77	2020	Ectimated .90159MWh - 11%	Final energy consumption	2011	000	5 641	-1%	. 7	010	20 759	6 -1.07%	19.56%	27.69%
N N	-147	NOT SET	ET -147	147 203	3			-38%	-42%		target				inial energy consumption	2011		5 041		79	719	20.75	12.26%		12.26%
Image: base wire state Image: base wire state<	-280	NOT SET	ET -280	280 109	9	-80% N.A	A.	-72%	-69%	2050 NOT SET	Estimated RES in final														
Image: Proper biase in the section of the sectin of the section of the section of the section of the se					14%			-18%				81.88			Final energy consumption	2010	1,07	5 829		- 185	890	29.659	-22.32%	9.45%	7.33%
Image: Proper test for the section of test for test		NOT SET				-80% N.A	A.	-37%	-28%	2050 NOT SET	Estimated RES in final		2030	NUTSET					NUTSET	102	931		12.26%	9.45%	12.26%
Image: brance Image:	-25	114 149 -20%	-20% -25	-25 98	8 8%			-19%	-14%		consumption, no target	20.38			Final energy consumption	2012	24	4 210		- 24	220	16.089	-11.51%	21.70%	4.57%
Image: brance Image: b	-91	NOT SET	-48 ET -91	-91 32	2			-74%	-72%	2050 NOT SET				-24% vs PRIMES scenarios					HOTSET	20	200		12.20%	20.0070	12.20%
Image: bit with the section of the sectin of the section o	-72,798	516,817 559,987	-72,798	798 444,019	9	-14%	-13%			2020 17%			2020	(primary energy consumption 158.0Mtoe, final energy consumption 124.0Mtoe)	Energy consumption	2007 PRIMES projection fo 2020	r 1,56	6 1,254	-24%	- 124	1,442	188	14.99%		
Ye for substrate of the state of the	-184,796		-184,796	796 -184,796	5	-36%	-33%			2030 30%			2030	(primary energy consumption 125.1Mtoe, final energy	Energy consumption	2016 PRIMES projection fo 2030	r		-40%	- 358	1,207	- 47	-3.74%		
Palma 200 2000 900 45 44 47 200 45 46 200 200 200 200 200 200 200 200 200 200 2000 200	-413,454		-413,454	454 -413,454	5	-80% or more								consumption 103.8M(0e)											
Early 2.03 0.03/s (27.28 4CO2) C20 mission 2.08 4.4 4.7 4.60/s 4.62/s 4.58/s 4.58/s 4.59/s	-9	5 44 47 -20%	-20% -9	-9 36	5 4%	4% -21%	-19%	-14%	-17%	2020 2%		1.646	2020	Estimated -16.937GWh = -16%		105834MWh in 2008,	10	6 85	-16%	- 17	89	24.539	6 -19.92%	12.04%	4.60
A A A CO2 Performance CO2 Same Constraints Constants Constraints Constant	-27	5 44 47 -60.30%	0.30% -27	-27 18	3	-62%	-58%	-35%	-59%	2030 55%		32.743	2030	Estimated -46.278GWh= -43.7%					-43.70%	- 46	60		-54.42%	-3.00%	-29.899
	-35			-35 10 -34 97	7 4%			-77%	-76% -23%			23,509	2020	Estimated -52.264MWh = -14.9%		350392 MWh in 2008	350	0 281	-15%	- 52	298	24.53	-18.55%	12.04%	5.979
	01			.91 50			_				target Estimated RES in final				consumption, no target Estimated final energy					52			-55.66%		-31.149
Q Vestive Cost 0 Cost 0 <thcost 0<="" th=""> <thcost 0<="" th=""></thcost></thcost>	-102			102 30				-31%			target	09.848	2030	c3tm/dteu +130.08864Wh = +44.7%					-44.70%	15/	194		-33.00%	-5.00%	-51.14%
202 4.19% (19275 tCO2) 0.20 emissions 2008 4.4 4.4 4.19% 4.4 4.0% 4.4% 4.4% 4.0% 4.4%	-19	5 44 48 -41.90%	1.90% -19	-19 27	7 4%	4% -43%	-40%	-14%	-40%	2020 16%	consumption, no target	17.49	2020	Estimated -17.432GWh = -13.8%		125801 MWh in 2008	120	6 101	-13.80%	- 17	108	24.539	6 -17.18%	12.04%	7.34%
Striang 200 61.08% (28130 tCO2) C22 emissions 200 46 4 4 61.08% 201 6.08% C31 6.08% C31 6.08% C31	-28			-28 18	3			-31%				21.55	2030	Estimated -46.051GWh = -36.6%					-36.60%	- 46	80		-45.58%	-3.00%	-21.05%
2 www.path2lc.eu D4.4 Working paper on the comparison of targets defined in local action plans and EU 2050 targets 19/10/2021 -22 -	f targets (ng paper on the comparisor	parison of targe	rgets defined	ed in loc			~178	-/070		- 22 -													1	X

LEARNING MUNICIPALITY NETWORKS

								GHG	Emissions								Renewable	Fnergy						Energy Efficienc	v						
						Ref. Year	1990	2005	Target	Target	Target Total	Change	Target	National	Total									Ref. Year	1990	Target	Target	Target Total	Change	Nationa	Total
Netw	ork Region		Target Value	Parameter	Ref.	Absolute		Absolute Value	(Local Refrence	Reduction	Final	from 1990 (F	arget Ref. 1990) %] [%]	Target (Local	Reduction	Target	Target Value	Parameter	Absolute value Ta [GWh] yes	arget	Target Value	Parameter	Reference Year	Absolute	Absolute	(Local	Absolute	Final	from 1990	Target (Ref. (Local	Reduction from 1990
		Year			Year	Value [ktCOeq]	Value [ktCOeq]	Value [ktCOeq]	Refrence Year) [%]	Absolute value [ktCOeq]	Emissions [ktCOeq]	to Local [9 Ref Year	[%] 2005)	(Local Ref.) [%]	from 1990 [%]	year			[GWh] ye	ear				Value [GWh, TWh in grey]	Value [GWh, TWh in grey]		value	Consumption [GWh]	to Local Ref Year	990) [%] (Local Ref.) [%	from 1990] [%]
				-																	1,5%/ energy savings per year to			0.11	0 11		[GWh]				
		202	-25% (previously -16%	GHG emission (nor	n- 1990		232,793	3 231,29	2	-58,198	174,595	5	-25% -25	5%		2020	14%	RES		2020	482PJ (60.7 Mtoe) -100 petajoules	Energy consumption	2012 (final energy	606	533	-4.6%	- 28	578	45	8.46%	
			compared to 2005)	ETS)			,		1												in 2020 compared to 2012 (2080PJ) -4.6%		consumption 2180PJ)								
																					-32.5% of energy consumption, -		Total Primary Energy								
ть	ne Netherlands	203	-49% (Max	GHG emission	1990					-114,069	-114,069		-49% -49	9%		2030	27%	RES in gross final		2030	0.8%/y 925PJ (Primary Energy	Energy Consumption	Consumption in 2000 was2830PJ, 2702PJ in 2017,			-32.50% -	- 95	510	- 22	-4.21%	
		20.	30 15.3MtonCo2e)	Circ emission	1550					-114,000	-114,003	1				2050	2770	consumption		2050	Consumption 1950PJ and final energy consumption 1837)	Energy consumption	Final was 2181 in 2000 and	'		-32.3076	- 55	510	- 22	-4.21/0	
																					energy consumption 1837)		2108 in 2017								
			-95%/climate neutral, water resilient and fully															renewable heat and													
		205	circular economy (Max	GHG emission	1990					-186,234	-186,234		-95% -96	5%		2050	100%	CO2 neutral electricity generation													
-	-	202	1.5 MtonCo2e) 20 NOT SET	-	+ +			-	NOT SET	-369	1.108	-9%	-25% N.A.	-27	% -259	2020	NOT SET			2020	NOT SET					NOT SET	387	5.442	10.60%	8.46% 7.65	% 19.05%
		203								-724			-49% N.A.	-54	% -499		NOT SET			2030	NOT SET					NOT SET	- 193			-4.21% -3.81	% 6.38%
	Groninge		almost 0 MtCO2 carbon						carbon										500MWp PV, 166MWth ST,				compard to 2018 (from								
	Groninge	203	35 neutral (already set in 2011)		2015	1,348	1,477	7 1,46	7 neutral by 2035	-1,403	74		-95% N.A.	-61	<mark>%</mark> -959	2035	Target not quantifiable		36MWp winf,	2035	-34%	Energy consumption	18.2PJ to 11.2PJ)	5,055	4,571	-34% -	- 1,719	3,336		-37.60% -3.81	<mark>%</mark> -27.01%
		201	50 NOT SET	-	_				NOT SET	-1,403	74		-95% N.A.	-61	× 050	2050	NOT SET		100% biofuels												
		20:	SUNUT SET	-					NUTSET	-1,403	/4		-95% N.A.	-01	70 -937	2050	NOTSET														
																		RES in gross final	3 scenarios: 421TJ = 11.11%;		-10% (expectd total consumption		not explicit, SECAP takes								
		202	20 NOT SET						NOT SET	-98	295	-9%	-25% N.A.	-27	<mark>%</mark> -259	2020	14% (+4 ~ -3%)	consumption	530TJ = 14%;	2020	3787 TJ = -9.9%)	Energy consumption	2014 baseline 4202TJ	1,285	1,236	-10%	- 129	1,157	3.94%	-10.39% 8.14	<mark>%</mark> -6.45%
																			685TJ = 18.1%												
육																			3 scenarios:												
erlan	Assen	203	municipal organization carbon neutral		2015	359	394	4 39:	1 N.A.	-211	182	2	-49% N.A.	-54	<mark>%</mark> -549	2023	16% (+4 ~ -3%)	RES in gross final consumption	486TJ=13,27% / 595TJ=16,24% /	2023	8 expected -12.8% (3665TJ)					-12.80%	- 164	1,121		-13.30% 4.48	<mark>%</mark> -9.36%
Veth			carbon neatrai															11.150 mpriori	751TJ=20,49%												
The		204	all buildings carbon						N A	-284	110		-72% N.A.	-	e 700	2040	NOT SET			2020	NOT SET					NOT SET		1,233		-4.21% -4.05	× 0.27W
NL -			neutral			_			IN.M.		110			-79	-729	_				2050	NOT SET					NULSEL	52	1,233		-4.05	-0.27%
S		205	50 carbon neutral						carbon neutral	-374	20		-95% N.A.	-104	<mark>%</mark> -959	2050	NOT SET														
			22 224		1990					~				-				RES in gross final				71% of energy consumption									
		202	20 -23%	emissions	(data: 2014)	933	1,023	3 1,010	6 -23%	% -235	787	-9%	-23% -23	3% -27	% -239	2020	13%	consumption	1400TJ	2020	NO SET	is due to the industry and horticolture	2014 16084TJ	4,468	4,298	NOT SET	364	4,831	3.94%	8.46% 8.14	<mark>%</mark> 12.40%
	Emmen		30 NOT SET						NOT SET	-501	522		-49% N.A.	-54	<mark>%</mark> -499		NOT SET			2030	NOT SET					NOT SET	- 181	4,287		-4.21% -4.05	-0.27%
			35 -30%	emissions	1990				-30% carbon	% -307		5	-30% N.A.	-61	% -309		NOT SET														
		205	50 carbon neutral						neutral	-971	51	L	-95% N.A.	-95	<mark>%</mark> -959	2050	NOT SET														
		203	20 NOT SET		2015	742	912	2 90	8 NOT SET	-185	556	.0%	-25% -23	2%	« .279	2020	16%	from sustainable energy 2013 energy	1.41PJ	2020	-20% consumption in buildings	built environment was 49% of energy consumption in	2010	2,765	2,289	-20%	- 553	2,212	20.81%	-24.16% 7.00	-3.35%
	Leeuward		201001 321		2015	742	015		SINCT SET	-103	550	-5%	-23/6 -23	5/6 *22	/0 -32/	2020	10%	consumption	1.415	2020	(total saving in 10 years of 608GJ)	2018 50% of emissions	2010	2,703	2,205	-20%	- 555	2,212	20.01/0	-24.10% 7.00	-5.55%
			30 NOT SET						NOT SET	-398	415		-49% N.A.		% -499		NOT SET			2030	NOT SET					NOT SET ·	- 96	2,669		-4.21% -3.49	<mark>%</mark> 16.59%
		205	50 NOT SET					-	NUTSET	-//2	41		-95% N.A.	-104	% -957		NOT SET	RES in final					compared to baseline								
		202	-18% ~ -23%, +1% non- FTS	GHG emissions	2005	89,502	61,344	4 89,50	2	-16,110 /	73,391/	20% / 12% -2	26.26% /18%/			2020	31% (34%, 38%, 41%)	consumption (19.5%		2020	-25% primary energy consumption		projections (final energy	221	139	-25%	- 41	180	41	-29.43%	
			ETS			,	,			20,585	68,916	3	3.56% 23%			25, 27		in 2005, 30.6% in 2017)			compared to projections		consumption 15.4- 15.6Mtoe)								
	Portugal		-45% ~-55%																				compared to baseline								
		203	30 (previously -30%/-40%),	- GHG emissions	2005					-40,276 / - 49,226	49,226 / 40,276			/-		2030	47% (20% in transport)	RES in final consumption		2030	-35% primary energy consumption	Energy consumption	projections (final energy consumption 14.4-			-35%	- 51	170	31	-36.97%	
			17% non-ETS							45,220	40,270	54780	0.2376 3376					consumption					14.8Mtoe)								
		205	50 carbon neutral (- 80~90%)	GHG emissions	2005					-71,601/-	17,900 / 8,950	-71% /1	116.72% /80% / 31.31% 90%	/-												NOT SET					
			20 -10% (-39.896 ton CO2)		2009	399	204		5 -10%		359		100	-25.9% / -			NOT SET	RES in final	2444	2020	NOT SET			1,380		NOT SET	- 266		52.85%	-29.43% -19.25	<mark>%</mark> 23.42%
		202	20 -10% (-39.896 ton CO2)	CO2 emissions	2009	399	394	4 57:	5 -10%	% -4	355		-10%	/% 33.2%	-97	2020	NULSEI	consumption	31%	2020	INUI SEI			1,380	903	NUTSET	- 266	1,114	52.85%	-29.43% -19.25	% 23.42%
	Alcobaç	203	30 NOT SET						NOT SET	-259 / -316	135 / 78		0.25% N.A.	-64.9% / - 79.3%	-65% / -809	2030	NOT SET	RES in final consumption	47%	2030	NOT SET						- 334	1,046		-36.97% -24.19	<mark>%</mark> 15.88%
		205	50 NOT SET						NOT SET	-460/-518	-72 / -130		116.72% / - N.A.	-115.3% /	117% /	2050	NOT SET	-	-	2050)										
		-										1:	31.31%	-25.9% / -	1329			RES in final													
		202	20 -20% (-57 632tCO2)	CO2 emissions	2009	288	285	5 41	5 -20%	% -58	231		-20% -14	^{4%} 33.2%	-199	2020	NOT SET	consumption	31%	2020	NOT SET			1,078	706	NOT SET	- 208	871	52.85%	-29.43% -19.25	<mark>%</mark> 23.42%
	Alenque	r 203	30 NOT SET						NOT SET	-187 / -228	98 / 56	-6	0.25% N.A.	-64.9% / - 79.3%	-65% / -809	2030	NOT SET	RES in final consumption	47%	2030	NOT SET						- 261	818		-36.97% -24.19	<mark>%</mark> 15.88%
			50 NOT SET						NOT SET	-332 / -374	-52 / -94		116.72% / - 31.31% N.A.		117% /		NOT SET			2050											
		_	-								527 54				1329	_		RES in final													
		202	20 -20% (-9 167tCO2)	CO2 emissions	2009	46	45	5 6	6 -20%	% -9	37	1%	-20% -14	4% <mark>-25.9% / -</mark> 33.2%	-199	2020	NOT SET	consumption	31%	2020	NOT SET			176	115	NOT SET	- 34	142	52.85%	-29.43% -19.25	<mark>%</mark> 23.42%
	Arruda do Vinhos		30 NOT SET						NOT SET	-30 / -36	16/9	-6	0.25% N.A.	-64.9% / - 79.3%	-65% / -809	2030	NOT SET	RES in final consumption	47%	2030	NOT SET						- 43	134		-36.97% -24.19	<mark>%</mark> 15.88%
	vinnos		50 NOT SET						NOT SET	-53 / -59		1	16.72% / -	-115 2%	117% /	2050	NOT SET	consumption		_											
		_				_			NOTSET	-53/-55	-8/-15	1	31.31% N.A.	129.7%	1329	2050				2050											
		202	20 -10% (-4527 ton CO2)	CO2 emissions	2009	45	45	5 65	5 -10%	% -5	41	1%	-10% -7	7% <mark>-25.9% / -</mark> 33.2%	-99	2020	NOT SET	RES in final consumption	31%	2020	NOT SET			169	110	NOT SET	- 32	136	52.85%	-29.43% -19.25	<mark>%</mark> 23.42%
	Bombarr	al 203	30 NOT SET						NOT SET	-29 / -36	15/9	-6	0.25% N.A.	-64.9% / -	-65% / -809	2030	NOT SET	RES in final	47%	2030	NOT SET						- 41	128		-36.97% -24.19	<mark>%</mark> 15.88%
_			50 NOT SET							-			0.25% 116.72% / - 21.21% N.A.	79.3%				consumption													
tuga		205							NOT SET	-52 / -59	-8 / -15	1	51.51/0	123.770	1329		NOT SET		-	2050											
- Por		202	20 -20% (-51951tCO2)	CO2 emissions	2009	260	257	7 374	4 -20%	% -52	208	3 1%	-20% -14	4% <mark>-25.9% / -</mark> 33.2%	-199	2020	NOT SET	RES in final consumption	31%	2020	NOT SET			999	653	NOT SET	- 192	806	52.85%	-29.43% -19.25	<mark>%</mark> 23.42%
ável	Caldas d	203	30 NOT SET						NOT SET	-169 / -206	88 / 51		5.66% / - N.A.	-64.9% / -	-65% / -809	2030	NOT SET	RES in final	47%	2030	NOT SET						- 242	757		-36.97% -24.19	<mark>%</mark> 15.88%
stent	Rainhas									-			0.25%	79.3%				consumption		_							2.12				
e Sus		205	50 NOT SET						NOT SET	-300 / -337	-47 / -84		116.72% / - 31.31% N.A.	129.7%	1329		NOT SET	-	-	2050											
Oest		202	20 -20% (-10198 tCO2)	CO2 emissions	2009	51	50	0 74	4 -20%	% -10	41	1%	-20% -14	^{-25.9%} / -	-199	2020	NOT SET	RES in final consumption	31%	2020	-20%	Energy consumption	2009 (16103 tep)	187	123	-20% -	- 37	150	52.85%	-30.57% -20.00	<mark>%</mark> 22.28%
	Nazaré	201	30 NOT SET			_			NOT SET	-33 / -40	17/10	-6	55.66% / - _{N.A.}	-64.9% / -	-65% / -809	2020	NOT SET	RES in final		_	NOT SET						- 45	142		-36.97% -24.19	% 15.88%
	wazare	_										80	0.25% N.A.	79.3%				consumption									45	142		50.5776 -24.19	13.68%
		205	50 NOT SET						NOT SET	-59 / -66	-9 / -17		116.72% / - 31.31% N.A.	-115.3% / 129.7%	117% / 1329	2050	NOT SET	-		2050											
		202	20 -34% (-14.167,54 tCO2)	CO2 emissions	2009	33	33	3 41	8 -34%	% -11	22			4% -25.9% / -	-339		NOT SET	RES in final	31%	2020	-23%	Energy consumption+AE59	2009 (123357,93 MWh,	123	81	-23% -	- 28	95	52.85%	-35.15% -23.00	<mark>%</mark> 17.69%
	A												55.66% / -	-64.9% / -				consumption RES in final					13022tep)								
	Óbidos		30 NOT SET						NOT SET	-21/-26	11/6	80	0.25% N.A.	79.3%	-65% / -809		101 321	consumption	47%	2030	NOT SET					-	- 30	94		-36.97% -24.19	<mark>%</mark> 15.88%
		205	50 NOT SET						NOT SET	-38 / -43	-6 / -11		116.72% / - N.A.	-115.3% / 129.7%	117% / 1329	2050	NOT SET	-	-	2050	D										
		203	20 -10% (25976 tonCO2)	CO2 emissions	2009	98	97	7 14	2 -10%	% -10	99	1%	-10% -7	-25.9% / -	-99		NOT SET	RES in final	31%	2020	NOT SET			369	242	NOT SET	- 71	298	52.85%	-29.43% -19.25	<mark>%</mark> 23.42%
					2005	50	5.						E 669/ /	33.2% -64.9% / -	_			consumption RES in final							2.12						
	Peniche		30 NOT SET						NOT SET	-64 / -78	33 / 19	2 80	0.25% IN.A.	79.3%	-65% / -809			consumption	47%	2030	NOT SET					-	- 89	280		-36.97% -24.19	<mark>%</mark> 15.88%
		205	50 NOT SET						NOT SET	-113/-128	-18 / -32	-1	116.72% / - 31.31% N.A.	-115.3% /	117% /	2050	NOT SET	-	-	2050	D										
		_	20 -20% (at least)	CO2 emissions	2009	118		s	0 -20%	*		1:	51.51/0	129.7% -25.9% / - 33.2%		2020	209	RES in final		2020		Energy Consumption	2009 (27915 tep)	325	212	-20%	- 65	260	52.85%	-20.57% - 20.00	<mark>%</mark> 22.28%
				CO2 emissions	2009	118	116	170			94		E CCW /	64.09/ /	_		20%	consumption				chergy consumption	2005 (27515 teh)	325	212	-20%					
	Torres Vedras		30 NOT SET						NOT SET	-76 / -93	40 / 23	9	55.66% / - 0.25% N.A.		-65% / -809	2030	NOT SET	RES in final consumption	47%	2030	NOT SET						- 118	206		-55.76% -36.48	% -2.92%
			50 NOT SET						NOT SET	-136 / -153	-21/-38	-1	116.72% / -	-115.3% /	117% / 1329	2050	NOT SET			2050											
												1	31.31% N.A.	129.7%	1329																

- 23 -

PATH2LC

ANNEX 2: TOTAL NET EMISSION HISTORICAL DATA AND INDEX

Total Net Emissions [Mt CO2 eq]

			(Counti	гy	
Year	EU-27	France	Greece	Italy	Netherlands	Portugal
1990	4,657	535	104	517	233	61
1991	4,526	561	103	503	241	63
1992	4,410	553	104	504	242	63
1993	4,332	528	104	510	244	60
1994	4,309	526	107	492	245	60
1995	4,346	531	109	512	246	66
1996	4,412	543	113	505	257	60
1997	4,349	536	118	521	249	62
1998	4,300	548	124	536	250	69
1999	4,218	539	123	533	238	76
2000	4,234	550	127	540	236	78
2001	4,262	543	128	531	236	75
2002	4,264	528	127	531	234	80
2003	4,370	530	132	560	235	85
2004	4,352	525	133	559	237	79
2005	4,335	526	136	560	231	90
2006	4,311	513	132	550	226	75
2007	4,315	503	137	566	225	69
2008	4,190	495	132	535	224	65
2009	3,867	484	124	475	218	62
2010	3,963	491	118	481	229	60
2011	3 <i>,</i> 858	465	115	477	216	59
2012	3,776	464	112	466	211	60
2013	3,691	463	104	416	211	59
2014	3,578	438	102	395	204	57
2015	3 <i>,</i> 643	448	95	405	212	62
2016	3 <i>,</i> 656	447	91	406	212	65
2017	3,725	454	96	421	210	84
2018	3 <i>,</i> 630	437	93	403	205	65

Total Net Emissions, Index base 1990 [percentage]

			(Country		
Year	EU-27	France	Greece	Italy	Netherlands	Portugal
1990	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
1991	97.2%	104.9%	99.5%	97.4%	103.4%	103.1%
1992	94.7%	103.4%	100.7%	97.6%	104.1%	102.6%
1993	93.0%	98.7%	100.1%	98.8%	104.6%	98.2%
1994	92.5%	98.2%	103.4%	95.2%	105.1%	98.6%
1995	93.3%	99.2%	105.2%	99.0%	105.5%	107.1%
1996	94.7%	101.5%	108.7%	97.6%	110.4%	97.7%
1997	93.4%	100.1%	113.7%	100.7%	107.1%	101.6%
1998	92.3%	102.5%	119.4%	103.7%	107.6%	112.5%
1999	90.6%	100.7%	119.1%	103.1%	102.0%	123.9%
2000	90.9%	102.8%	122.6%	104.4%	101.3%	127.2%
2001	91.5%	101.4%	123.0%	102.7%	101.4%	121.7%
2002	91.6%	98.6%	122.6%	102.8%	100.6%	129.6%
2003	93.8%	99.0%	127.2%	108.3%	100.9%	138.5%
2004	93.4%	98.2%	128.0%	108.2%	101.7%	128.1%
2005	93.1%	98.3%	130.9%	108.4%	99.4%	145.9%
2006	92.6%	95.8%	127.3%	106.4%	97.2%	122.2%
2007	92.7%	93.9%	131.8%	109.6%	96.6%	112.5%
2008	90.0%	92.5%	127.1%	103.5%	96.3%	106.4%
2009	83.0%	90.5%	119.9%	92.0%	93.5%	101.2%
2010	85.1%	91.7%	113.9%	93.0%	98.5%	98.5%
2011	82.8%	86.8%	111.1%	92.2%	92.6%	96.6%
2012	81.1%	86.7%	107.7%	90.2%	90.7%	97.2%
2013	79.3%	86.5%	99.9%	80.5%	90.7%	95.6%
2014	76.8%	81.9%	98.4%	76.3%	87.5%	93.1%
2015	78.2%	83.8%	91.3%	78.5%	91.3%	101.7%
2016	78.5%	83.5%	88.2%	78.6%	91.1%	105.4%
2017	80.0%	84.9%	92.4%	81.5%	90.4%	137.5%
2018	78.0%	81.7%	89.8%	78.0%	88.2%	106.4%

Figure 12: Total Net GHG emissions per Country and EU-27 [kt CO₂ eq], yearly change [percentage], and index (base 1990)

PATH2LC LEARNING MUNICIPALITY NETWORKS

ANNEX 3: FINAL ENERGY CONSUMPTION HISTORICAL DATA AND INDEX

Final Energy Consumption [TWh]

Final Energy Consumption.	Index base 1990 [percentage]

	Country							Country					
Year	EU-27	France	Greece	Italy	Netherlands	Portugal	Year	EU-27	France	Greece	Italy	Netherlands	Portugal
1990	11,073	1,585	171	1,254	533	139	1990	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
1991	11,073	1,685	175	1,289	561	144	1991	100.0%	106.3%	102.1%	102.8%	105.4%	103.8%
1992	10,771	1,693	176	1,290	556	149	1992	97.3%	106.9%	102.8%	102.9%	104.4%	107.6%
1993	10,785	1,677	176	1,297	577	151	1993	97.4%	105.8%	103.0%	103.4%	108.3%	108.7%
1994	10,715	1,650	180	1,278	569	158	1994	96.8%	104.1%	105.1%	101.9%	106.9%	113.6%
1995	10,933	1,671	184	1,334	590	162	1995	98.7%	105.4%	107.7%	106.4%	110.7%	116.4%
1996	11,399	1,747	197	1,346	639	171	1996	102.9%	110.3%	115.3%	107.4%	120.0%	123.1%
1997	11,300	1,721	203	1,358	607	178	1997	102.0%	108.6%	118.7%	108.3%	113.9%	128.1%
1998	11,364	1,768	213	1,398	608	190	1998	102.6%	111.6%	124.8%	111.5%	114.1%	136.7%
1999	11,335	1,782	213	1,449	608	198	1999	102.4%	112.4%	124.4%	115.5%	114.2%	142.4%
2000	11,392	1,800	218	1,452	606	209	2000	102.9%	113.6%	127.6%	115.8%	113.7%	150.5%
2001	11,659	1,859	225	1,467	616	212	2001	105.3%	117.3%	131.7%	117.0%	115.6%	152.6%
2002	11,582	1,825	229	1,471	617	217	2002	104.6%	115.2%	134.1%	117.3%	115.8%	156.5%
2003	11,931	1,848	241	1,551	626	217	2003	107.7%	116.6%	141.2%	123.6%	117.5%	156.2%
2004	12,053	1,871	239	1,556	635	220	2004	108.8%	118.0%	139.7%	124.1%	119.2%	158.7%
2005	12,103	1,862	244	1,596	629	221	2005	109.3%	117.5%	143.0%	127.2%	118.0%	159.3%
2006	12,162	1,835	252	1,578	625	218	2006	109.8%	115.8%	147.1%	125.8%	117.4%	157.1%
2007	11,961	1,789	257	1,566	617	220	2007	108.0%	112.9%	150.3%	124.8%	115.8%	158.9%
2008	12,055	1,812	249	1,562	627	215	2008	108.9%	114.4%	145.8%	124.5%	117.7%	154.6%
2009	11,403	1,739	239	1,467	601	212	2009	103.0%	109.7%	140.0%	117.0%	112.8%	152.8%
2010	11,907	1,791	222	1,495	644	211	2010	107.5%	113.0%	129.6%	119.2%	120.8%	152.1%
2011	11,448	1,735		1,433	601	202	2011	103.4%	109.5%	128.8%	114.2%	112.8%	145.5%
2012	11,424	1,786		1,417	603	186	2012	103.2%	112.7%	116.1%	113.0%	113.1%	134.4%
2013	11,401	1,817	178	1,379	604	184	2013	103.0%	114.7%	104.4%	109.9%	113.4%	132.8%
2014	10,919	1,691		1,318	554	183	2014	98.6%	106.7%	106.0%	105.1%	103.9%	132.1%
2015	11,147	1,726		1,352	568	186	2015		-	112.7%		106.6%	134.1%
2016	11,371	1,749	195	1,348	580	188	2016	102.7%	110.3%	114.0%	107.5%	108.9%	135.6%
2017	11,510	1,737		1,340		193	2017			111.7%		109.7%	138.8%
2018	11,509	1,708		1,353	589	196	2018		107.8%			110.6%	141.4%
2019	11,438	1,692	188	1,342	580	199	2019	103.3%	106.7%	110.1%	107.0%	108.9%	143.6%

Figure 13: Final Energy Consumption [GWh], change since 1990 [percentage], Index base 1990 [percentage]

, **Î**

ANNEX 4: FINAL ENERGY CONSUMPTION REFERENCE SCENARIOS

Primes Scenarios 2007 of Final Energy Consumption [ktoe]									
Country	1990	1995	2000	2005	2010	2015	2020	2025	2030
EU-27 (right axis)	1070684	1066881	1,112,182	1166880	1237040	1302036	1347807	1382755	1405680
France	136,214	141,436	152,315	156,523	163,626	170,499	174,433	177,684	179,434
Greece	14,509	15,801	18,513	20,742	23,034	24,684	25,899	26,535	26,780
Italy	107,160	113,709	123,254	134,080	145,970	155,074	162,631	167,950	171,973
Netherlands	42,924	47,670	50,125	51,588	53,843	56,289	57,622	58,781	59,663
Portugal	11,208	13,042	16,937	18,654	20,251	21,758	23,232	24,493	25,289

Primes Scenarios 2007 of Final Energy Consumption [ktoe]

Figure 14: Complete figures of Primes Scenarios REF2007 for Final Energy Consumption, used to set 2020 efficiency targets at EU level.

Primes Scenarios 2016 of Final Energy Consumption [ktoe]

Country	2000	2005	2010	2015	2020	2025	2030	2035	2040	2045	2050
EU-27 (right axis)	1,129,427	1,186,370	1,155,879	1,133,457	1,133,797	1,106,322	1,081,368	1,065,407	1,067,769	1,077,083	1,085,865
France	154,639	160,337	155,397	155,251	156,459	151,206	147,426	144,700	144,604	144,546	145,352
Greece	18,676	20,958	19,197	17,486	17,105	16,398	15,635	15,677	15,739	15,720	15,657
Italy	125,579	134,544	124,781	122,385	122,484	119,189	115,857	114,419	114,885	116,344	116,607
Netherlands	50,505	51,654	51,835	50,854	50,357	48,018	45,953	44,373	44,460	44,854	45,371
Portugal	17,919	19,009	18,022	16,789	16,831	16,655	16,266	15,964	15,804	15,654	15,574

Figure 15: Complete figures of Primes Scenarios REF2016 for Final Energy Consumption, used to set 2030 efficiency targets at EU level.

F

PATH2LC

ANNEX 5: TARGETS PARAMETERS AND TARGET TYPES OVERVIEW

			Emission Doduction Torgets		Denouvehio Froum	Torrate			
		Base year	Emission Reduction Targets Parameter	Target Type	Renewable Energy Parameter	Targets Target Type	Base year	Energy Efficiency Targets Parameter	Target Type
	EU27	1990 (2005)	GHG Emissions (ETS, non ETS)	Base year goal (1)	RES share in final energy consumption, electricity from RES	Target year goal (3)	2007 projections to 2020, 2016 projections to 2030	Energy Efficiency (= reduction in primary and final energy consumption)	Trend scenario goal (4)
	France	1990, 2005	GHG Emissions (ETS, non ETS, with/without LULUCF, without the use of carbon offsetting)	Base year goal (1)	RES share in (gross) final energy consumption, electricity from RES	Target year goal (3)	2007 projections to 2020, 2012 for 2030 and 2050 targets	Final energy consumption	Fixed level goal and trend scenario goal (2, 4)
e	CCMDL	2015	GHG Emissions	Base year goal and fixed level goal (1, 2)	Renewable Energy Production	Fixed level goal and target year goal (2, 3)	2015	Final energy consumption	Base year goal and fixed level goal (1, 2)
- Franc	CCSB	2013	GHG Emissions	Base year goal and fixed level goal (1, 2)	Renewable Energy Production	Fixed level goal and target year goal (2, 3)	2013	Energy consumption	Base year goal and fixed level goal (1, 2)
ALTE69 - France	COR	2015	GHG Emissions	Base year goal (1)	Renewable Energy Production	Fixed level goal and target year goal (2, 3)	2015	Energy consumption	Base year goal and fixed level goal (1, 2)
•	SOL	2015	GHG Emissions	Base year goal and fixed level goal (1, 2)	Renewable Energy Production and energy positive	Fixed level goal and target year goal (2, 3)	2015	Energy consumption	Base year goal and fixed level goal (1, 2)
	Greece	1990, 2005	CO2 Emissions (+ phase out lignite)	Base year goal (1)	RES share in (gross) final energy consumption	Target year goal (3)	2007 projections to 2020, 2016 projections to 2030	Primary energy consumption and energy savings	Fixed level goal and trend scenario goal (2, 4)
	Oichalia	2011	CO2 Emissions	Base year goal (1)	Renewable Energy Production	No target, but fixed level projection (5)	2011	Final energy consumption	No target, but fixed level projection (5)
ece	lerapetra	2010	CO2 Emissions	Base year goal and fixed level goal (1, 2)	Renewable Energy Production	No target, but fixed level projection (5)	2010	Final energy consumption	No target, but fixed level projection (5)
N - Greece	Korinthos	2011	CO2 Emissions	Base year goal and fixed level goal (1, 2)	Renewable Energy Production	No target, but fixed level projection (5)	2011	Final energy consumption	No target, but fixed level projection (5)
SCN	Vari-Voula- Vouliagmeni	2010	CO2 Emissions	Base year goal and fixed level goal (1, 2)	Renewable Energy Production	No target, but fixed level projection (5)	2010	Final energy consumption	No target, but fixed level projection (5)
	Messinis	2012	CO2 Emissions	Base year goal and fixed level goal (1, 2)	Renewable Energy Production	No target, but fixed level projection (5)	2012	Final energy consumption	No target, but fixed level projection (5)
	Italy	2005	GHG Emissions (ETS, non ETS)	Base year goal (1)	RES share in gross final energy consumption	Target year goal (3)	2007 projections to 2020, 2016 projections to 2030	Final energy consumption	Fixed level goal and trend scenario goal (2, 4)
aly	Palma Campania	2008	CO2 Emissions	Base year goal and fixed level goal (1, 2)	Renewable Energy Production	No target, but fixed level projection (5)	2008	Final energy consumption	No target, but fixed level projection (5)
UCSA - Italy	San Giuseppe Vesuviano	2008	CO2 Emissions	Base year goal and fixed level goal (1, 2)	Renewable Energy Production	No target, but fixed level projection (5)	2008	Final energy consumption	No target, but fixed level projection (5)
ň	Striano	2008	CO2 Emissions	Base year goal and fixed level goal (1, 2)	Renewable Energy Production	No target, but fixed level projection (5)	2008	Final energy consumption	No target, but fixed level projection (5)
т	he Netherlands	1990	GHG Emissions (ETS, non ETS), climate neutral, water resilient and full circular economy	Base year goal and fixed level goal (1, 2)	RES share in gross final energy consumption, 100% RES heating and carbon neutral electricity	Target year goal (3)	2012 and 2016 projections to 2030	Primary and final energy consumption	Base year goal, fixed level goal and trend scenario goal (1, 2, 4)
lands	Groningen	2015	GHG Emissions	Fixed level goal (2)	RES Installed capacity	Target year goal (3)	2018	Energy consumption	Base year goal and fixed level goal (1, 2)
Netherlands	Assen	en 2015 GHG Emissions		Tacit fixed level goal (2b)	RES share in (gross final) energy consumption	Target year goal (3)		Energy consumption	No target, but fixed level projection (5)
- The	Emmen	1990 (2014)	GHG Emissions	Base year goal (1)	RES share in (gross final) energy consumption	Target year goal (3)	2014	Energy consumption	No target, but fixed level projection (5)
CNNL	Leeuwarden	2015	-	-	RES share in (gross final) energy consumption	Target year goal (3)	2010	Building sectr energy consumption	Base year goal and fixed level goal (1, 2)
	Portugal	2005	GHG Emissions (ETS, non ETS)	Base year goal (1)	RES share in final energy consumption	Target year goal (3)	2007 projections to 2020, 2016 projections to 2030	Primary energy consumption	Base year goal and fixed level goal (1, 2)
	Alcobaça	2009	CO2 Emissions	Base year goal and fixed level goal (1, 2)	-	-		-	-
	Alenquer	2009	CO2 Emissions	Base year goal and fixed level goal (1, 2)	-	-		-	-
rtugal	Arruda dos Vinhos	2009	CO2 Emissions	Base year goal and fixed level goal (1, 2)	-	-		-	-
el - Poi	Bombarral	2009	CO2 Emissions	Base year goal and fixed level goal (1, 2)	-	-		-	-
tentáv	Caldas da Rainhas	2009	CO2 Emissions	Base year goal and fixed level goal (1, 2)	-	-		-	-
Oeste Sustentável - Portugal	Nazaré	2009	CO2 Emissions	Base year goal and fixed level goal (1, 2)	-	-	2009	Energy consumption	Base year goal and fixed level goal (1, 2)
Oes	Óbidos	2009	CO2 Emissions	Base year goal and fixed level goal (1, 2)	-	-	2009	Energy consumption	Base year goal and fixed level goal (1, 2)
	Peniche	2009	CO2 Emissions	Base year goal and fixed level goal (1, 2)	-	-		-	-
	Torres Vedras	2009	CO2 Emissions	Base year goal and fixed level goal (1, 2)	RES share in final energy consumption	Target year goal (3)	2009	Energy consumption	Base year goal and fixed level goal (1, 2)

Figure 16: Targets parameters and units of measure overview showing how even after harmonization, some targets remain incomparable.

LEGEND						
Target Types	Definition					
Base year goal (1)	Percentage reduction/increase compared to base year by target (single) year.					
Fixed level (2)	Fixed value by target (single) year.					
Tacit fixed level goal (2b)	Sector carbon neutrality by target (single) year, without disclosing correspondig value.					
Target year goal (3)	Percentage of given parameter by target (single) year.					
Trend scenario goal (4)	Percentage reduction compared to trend scenario for target (single) year					
No target, but fixed level projection (5)	No commitment to any target, but a projecion for the target year.					
-	No target was set.					